Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The widespread use of unmanned aerial vehicles (UAVs) has heightened the demand for effective UAV monitoring, particularly in protected areas. Current learning-based detection systems depend heavily on camera sensor ability to capture UAVs in surveillance areas; however, advanced camera control methods remain limited. This paper proposes determining multi-camera trajectories that maximize UAV capture probability, ensuring UAVs remain within the camera field of view for further analysis, such as detection methods from camera-shot images. For this purpose, stochastic modeling is considered in the control framework for optimizing surveillance camera trajectories to enhance the probability of capturing UAVs. Key control parameters are derived through classical probability evaluations of the model with maximizing the entropy and covering trajectory-based strategies are applied. The reliability of stochastic system modeling is empirically validated through comprehensive computational experiments. These findings demonstrate the model potential to enhance UAV capture rates through optimized camera trajectories and coverage efficiency, paving the way for future advancements in real-environment applications.
Rocznik
Tom
Strony
art. no. e153828
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
- University of Science and Technology (UST), 217, Gajeong-ro, Daejeon, 34113, South Korea
autor
- Yiseotec Co.Ltd, 18 Saeromnam-ro, Sejong, 30126, South Korea
autor
- Electronics and Telecommunications Research Institute (ETRI), 218, Gajeong-ro, Daejeon, 34129, South Korea
autor
- Electronics and Telecommunications Research Institute (ETRI), 218, Gajeong-ro, Daejeon, 34129, South Korea
autor
- Hallym University, 1 Hallymdaehak-gil, Chuncheon, 24252, South Korea
Bibliografia
- [1] P. Ekka, “A Review Paper on Unmanned Aerial Vehicle (U.A.V.),” Int. J. Eng. Res. Tech., vol. 5, no. 23, pp. 1–3, 2017, doi: 10.17577/IJERTCONV5IS23008.
- [2] S.A.H. Mohsan, N.Q.H. Othman, Y. Li, M. H. Alsharif, and M. A. Khan, “Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends,” Intel. Serv. Rob., vol. 16, pp. 109–137, 2023, doi: 10.1007/s11370-022-00452-4.
- [3] P. Szywalski and A. Waindok, “A decentralized radio network for small groups of unmanned aerial vehicles,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e147922, 2024, doi: 10.24425/bpasts.2023.147922.
- [4] A. Parrek, V. Singh, and A. Jain, “Detection Algorithms for Detecting Drones/UAVs,” Darpan Int. Res. Anal., vol. 12, no. 3, pp. 340–351, 2024, doi: 10.36676/dira.v12.i3.93.
- [5] L. Bi, Z.-X. Xu, and L. Yang, “Low-cost UAV detection via WiFi traffic analysis and machine learning,” Sci. Rep., vol. 13, p. 20892, 2023, doi: 10.1038/s41598-023-47453-6.
- [6] J. Łukasiewicz and T. A. Kobaszyńska, “Proposed method for building an anti-drone system for the protection of facilities important for state security,” Sec. Def. Quart., vol. 39, no. 3, pp. 88–107, 2022, doi: 10.35467/sdq/149268.
- [7] X. Zhang and K. Kusrini, “Autonomous long-range drone detection system for critical infrastructure safety,” Mult. Tools App., vol. 80, pp. 23723–23743, 2021, doi: 10.1007/s11042-020-10231-x.
- [8] R.A. Zitar, M. Al-Betar, M. Ryalat, and S. Kassaymeh, “A review of UAV Visual Detection and Tracking Methods,” arXiv e-Print Archive, 2023, doi: 10.48550/arXiv.2306.05089.
- [9] J. Zhao, J. Zhang, D. Li, and D. Wang, “Vision-Based Anti-UAV Detection and Tracking,” IEEE Trans. Intel. Trans. Sys., vol. 23, no. 12, pp. 25323–25333, 2022, doi: 10.1109/TITS.2022.3177627.
- [10] N. Al-Qubaydhi et al., “Deep learning for unmanned aerial vehicles detection: A review,” Com. Sci. Rev., vol. 51, p. 100614, 2024, doi: 10.1016/j.cosrev.2023.100614.
- [11] Y.I. Kim, Y.G. Min, P.S. Hee, J. Wun-Cheol, S. Soonyong, and H. Tae–Wook, “The analysis of image acquisition method for Anti-UAV surveillance using cameras image,” in Proc. International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, 2020, pp. 545–549, doi: 10.1109/ICTC49870.2020.9289164.
- [12] A.S. Olagoke, H. Ibrahim, and S.S. Teoh, “Literature Survey on Multi-Camera System and Its Application,” IEEE Access, vol. 8, pp. 172892–172922, 2020, doi: 10.1109/ACCESS.2020.3024568.
- [13] T.I. Amosa et al., “Multi-camera multi-object tracking: A review of current trends and future advances,” Neurocomputing, vol. 552, p. 126558, 2023, doi: 10.1016/j.neucom.2023.126558.
- [14] P. Natarajan, P.K. Atrey, and M. Kankanhalli, “Multi-Camera Coordination and Control in Surveillance Systems: A Survey,” ACM Trans. Mult. Comp. Comm. App., vol. 11, no. 4, pp. 1–30, 2015, doi: 10.1145/2710128.
- [15] Y.I. Kim, Y.G. Min, P.S. Hee, J. Wun-Cheol, S. Soonyong, and H. Tae–Wook, “The analysis of UAV detection performance using rotating cameras,” in Proc. International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, 2021, pp. 1262–1265, doi: 10.1109/ICTC 52510.2021.9621076.
- [16] P.J. Smith, I. Singh, P. A. Dmochowski, J.P. Coon, and R. Green, “Flexible Mobility Models Using Stochastic Differential Equations,” IEEE Trans. Veh. Tech., vol. 71, no. 4, pp. 4312–4321, 2022, doi: 10.1109/TVT.2022.3146407.
- [17] B. Oksendal, “Stochastic Differential Equations” in: Universitext book series – Stochastic Differential Equations: An Introduction with Applications, Berlin, Heidelberg: Springer, 2003, pp. 65–84, doi: 10.1007/978-3-642-14394-6_5.
- [18] P. Kumari, N. Nandyala, A.K.S. Teja, N. Goel, and M. Saini, “Dynamic Scheduling of an Autonomous PTZ Camera for Effective Surveillance,” in Proc. IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 2020, pp. 437–445, doi: 10.1109/MASS50613.2020.00060.
- [19] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,” Robot. Auton. Syst., vol. 61, no. 12, pp. 1258— 1276, 2013, doi: 10.1016/j.robot.2013.09.004.
- [20] M. Annunziato and A. Borzì, “A Fokker–Planck control framework for stochastic systems,” EMS Surv. Math. Sci., vol. 5, no.1/2, pp. 65-–98, 2018, doi: 10.4171/EMSS/27.
- [21] H. Risken, “The Fokker-Planck Equation,” in Springer Series in Synergetics - The Fokker-Planck Equation: Method of Solution and Applications, vol. 18, Berlin, Heidelberg: Springer, 1989, pp. 63–95, doi: 10.1007/978-3-642-61544-3.
- [22] L. Pichler, A. Masud, and L.A. Bergman, “Numerical Solution of the Fokker–Planck Equation by Finite Difference and Finite Element Methods—A Comparative Study,” in Computational Methods in Applied Sciences Book Series – Comp. Meth. in Stoch. Dyn., M. Papadrakakis, G. Stefanou, and V. Papadopoulos, Eds., vol. 26, Dordrecht: Springer, 2013, pp. 69–85, doi: 10.1007/978-94-007-5134-7_5.
- [23] C.R. Qi, W. Liu, C. Wu, H. Su, and L.J. Guibas, “Frustum PointNets for 3D Object Detection from RGB-D Data,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, USA, 2018, pp. 918–927, doi: 10.1109/CVPR.2018.00102.
- [24] S. Polidoro, “Uniqueness and representation theorems for solutions of Kolmogorov-Fokker-Planck equations,” Rendiconti di Matematica e delle sue Applicazioni. Serie VII, vol. 15, pp. 535– 560, 1995.
- [25] V. Bogachev, G. Da Prato, and M. Röckner, “Existence and uniqueness of solutions for Fokker–Planck equations on Hilbert spaces,” J. Evol. Equ., vol. 10, pp. 487–509, 2010, doi: 10.1007/s00028-010-0058-y.
- [26] G.N. Saridis, “Entropy formulation of optimal and adaptive control,” IEEE Trans. Auto. Cont., vol. 33, no. 8, pp. 713–721, 1988, doi: 10.1109/9.1287.
- [27] H. Shen, Q. Wang, and Y. Yi, “Event-Triggered Tracking Control for Adaptive Anti-Disturbance Problem in Systems with Multiple Constraints and Unknown Disturbances,” Entropy, vol. 25, no. 1, p. 43, 2023, doi: 10.3390/e25010043.
- [28] C.E. Shannon, “A mathematical theory of communication,” Bell. Sys. Tech. J., vol. 27, no. 3, pp. 379–423, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.
- [29] J.V. Michalowicz, J. M. Nichols, and F. Bucholtz, Handbook of Differential Entropy, 1st ed., Chapman and Hall/CRC, 2013, doi: 10.1201/b15991.
- [30] E.T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev., vol. 106, pp. 620–630, 1957, doi: 10.1103/PhysRev.106.620.
- [31] D.E. Holmes, Jaynes and the Principle of Maximum Entropy. Santa Fe Institute Press, 2017, doi: 10.37911/9781947864528.14.
- [32] C. Parkinson, D. Arnold, A.L. Bertozzi, Y.T. Chow, and S. Osher, “Optimal human navigation in steep terrain: a Hamilton JacobiBellman approach,” Commun. Math. Sci., vol. 17, no. 1, pp. 227–242, 2019, doi: 10.48550/arXiv.1805.04973
- [33] C. Parkinson, D. Arnold, A. Bertozzi, and S. Osher, “A model for optimal human navigation with stochastic effects,” SIAM J. Appl. Math., vol. 80, no. 4, pp. 1862–1881, 2020, doi: 10.1137/19M1296537.
- [34] J. Qui, “Viscosity solutions of Hamilton-Jacobi-Bellman equations,” SIAM J. Control Optim., vol. 56, no. 5, pp. 3708–3730, 2018, doi: 10.1137/17M1148232.
- [35] J. Weston, D. Tolić, and I. “Palunko, Application of Hamilton–Jacobi–Bellman Equation/Pontryagin’s Principle for Constrained Optimal Control,” J. Optim. Theory Appl., vol. 200, pp. 437–462, 2024, doi: 10.1007/s10957-023-02364-4.
- [36] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Proc., vol. 50, no. 2, pp. 174–188, 2002, doi: 10.1109/78.978374.
- [37] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press, 2005. [Online]. Available: https://books.google.co.kr/books?id=2Zn6AQAAQBAJ.
- [38] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, 1997, doi: 10.1007/978-0-8176-4755-1.
- [39] W.H. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, 2006, doi: 10.1007/0-387-31071-1.
- [40] D.P. Bertsekas, “Approximate Dynamic Programming,” in MIT Handbook – Dynamic Programming and Optimal Control, 3rd Ed., Massachusetts Institute of Technology, 2011, [Online]. Available: https://web.mit.edu/dimitrib/www/dpchapter.pdf.
- [41] H.J. Kushner and P. Dupuis, “Construction of the approximating Markov Chain,” in Applications of Mathematics – Numerical Methods for Stochastic Control Problems in Continuous Time, vol. 24, New York, NY: Springer, 2001, pp. 89–151, doi: 10.1007/978-1-4613-0007-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eb66f16-c7a6-4193-966d-9374b3cde2d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.