PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluctuations of ice in a lake due to the impact of the North Atlantic Oscillation (1960/61–2009/10) – a case study of Łebsko Lake

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper represents an attempt to understand the impacts produced by the North Atlantic Oscillation on the ice cover regime of the largest coastal lake in Poland situated in the northern part of the country. The purpose of the study was to estimate the impact of the North Atlantic Oscillation on selected ice cover parameters. The study also attempts to examine other factors that may affect its significant impact on observed changes in the climate. Water temperature data are used to assess temperature conditions in aqueous ecosystems as well as determine the heat absorption capacity of these systems. This allows one to then determine cooling rates in the event of ice cover formation. The data analysis provided in the paper focuses on selected characteristics of ice cover conditions (i.e. dependent variables) including the number of days with ice and maximum ice thickness in relation to NAO index changes (i.e. independent variables) for the reference period 1960/61–2009/10. In addition, the paper divides the studied period into 10-year subperiods in order to capture the weakest and strongest phases of NAO and assess the extent to which they affect the duration of ice cover. A large increase in the mean air temperature (1.8°C) occurred in the years 1960–2010. Trendline analysis indicates that the number of days with ice cover declined by about 60 days and the maximum thickness of ice cover decreased by about 10 cm. Oceanographic research employs satellite image data in order to accurately assess human impact. Therefore, ice cover forecasts generated for consecutive winter seasons may become an important tool in this type of assessment.
Czasopismo
Rocznik
Strony
153--166
Opis fizyczny
Bibliogr.47 poz., map., rys., tab., wykr.
Twórcy
  • Department of Hydrology, Faculty of Oceanography and Geography, University of Gdańsk, Gdańsk, Poland
  • Department of Hydrology, Faculty of Oceanography and Geography, University of Gdańsk, Gdańsk, Poland
  • Department of Hydrology, Faculty of Oceanography and Geography, University of Gdańsk, Gdańsk, Poland
Bibliografia
  • 1. Athanasiadis, P.J., Yeager, S., Kwon, Y., Bellucci, A., Smith, D.W, Tibaldi, S., 2020. Decadal predictability of North Atlantic blocking and the NAO, npj Clim. Atmos. Sci. 3 (20). https://doi.org/10.1038/s41612-020-0120-6
  • 2. Blackport, R., Fyfe, J.C, 2022. Climate models fail to capture strengthening wintertime North Atlantic jet and impacts on Europe. Sci. Adv. 8 (45), eabn3112. https://doi.org/10.1126/sciadv.abn3112
  • 3. Choiński, A., Ptak, M., Skowron, R., Strzelczak, A., 2015. Changes in ice phenology on polish lakes from 1961 to 2010 related to location and morphometry. Limnologica 53, 42-49. https://doi.org/10.1016/j.limno.2015.05.005
  • 4. Cieśliński, R., Olszewska, A., 2018. New insight into defining the lakes of the southern Baltic coastal zone. Environ. Monitor. Assess. 190 (102). https://doi.org/10.1007/s10661-017-6447-8
  • 5. Dailidiene, I., Davuliene, L., Kelpsaite, L., Razinkovas, A., 2012. Analysis of the climate change in Lithuanian coastal areas of the Baltic Sea. J. Coast. Res. 28 (3), 557-569. https://doi.org/10.2112/JCOASTRES-D-10-00077.1
  • 6. Delpeche-Ellmann, N., Torsvik, T., Soomere, T., 2016. A comparison of the motions of surface drifters with offshore wind properties in the Gulf of Finland, the Baltic Sea. Estuar. Coastal Shelf Sci. 172 (5), 154-164. https://doi.org/10.1016/j.ecss.2016.02.009
  • 7. Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Eade, R., Robinson, N., Andrews, M., Knight, J., 2016. Skilful predictions of the winter North Atlantic Oscillation one year Ahead. Nature Geosci. 9, 809-814.
  • 8. Granskog, M.A., Gerland, S., Perovich, D.K., 2014. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 9, 185-217.
  • 9. Hanna, E., Cropper, T.E., 2017. North Atlantic Oscillation. Oxford Research Encyclopedia of Climate Sci. https://doi.org/10.1093/9780190228620.013.22
  • 10. Haapala, J.J., Ronkainen, I., Schmelzer, N., Sztobryn, M., Bolle, H.J., Menenti, M., Ichtiaque Rasool, S., 2015. Recent Change—Sea Ice. In: The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-16006-1_8
  • 11. Höglund, A., Pemberton, P., Hordoir, R., Schimanke, S., 2017. Ice conditions for maritime traffic in the Baltic Sea in future climate. Res. Boreal Environ. 22, 245-265.
  • 12. Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation, Regional temperatures and precipitation. Science 269, 676-679.
  • 13. Hurrell, J.W., Kushnir, Y., Visbeck, M., 2001. The North Atlantic Oscillation. Science 291 (5504), 603-605. https://doi.org/10.1126/science.1058761
  • 14. Idzylete, R., Kozlov, I.E., Umgiesser, G., 2019. Remote sensing of ice phenology and dynamics of Europe’s largest coastal lagoon (The Curonian Lagoon). Remote Sens. 11 (17), 2059. https://doi.org/10.3390/rs11172059
  • 15. Jaagus, J., 2006. Trends in sea ice conditions in the Baltic Sea near the Estonian coast during the period 1949/50—2003/2004 and their relationships to large scale atmospheric circulation. Boreal Environ. Res. 11, 169-183.
  • 16. Jakimavičius, D., Šarauskienė, D., Kriaučiūnienė, J., 2020. Influence of climate change on the ice conditions of the Curonian Lagoon. Oceanologia 62 (2), 164-172. https://doi.org/10.1016/j.oceano.2019.10.003
  • 17. Karetnikov, S.G., Naumenko, M.A., 2008. Recent trends in lake Ładoga ice cover. Hydrobiologia 599, 41-48. https://doi.org/10.1007/978-1-4020-8379-2_5
  • 18. Karpechko, A.Y., Peterson, K.A., Scaife, A.A., Vainio, J., Gregow, A., 2015. Skilful seasonal predictions of Baltic Sea ice cover. Environ. Res. Lett. 10 (4).
  • 19. Kļavinš, M., Avotniece, Z., Rodinovs, V., 2016. Dynamics and impacting factors of ice regimes in latvia inland and coastal waters. Proc. Latv. Acad. Sci. Section B 70 (6), 400-408. https://doi.org/10.1515/prolas-2016-0059
  • 20. Kozlov, I.E., Krek, E.V., Kostianoy, A.G., Dailidiene, I., 2020. Remote Sensing of Ice Conditions in the Southeastern Baltic Sea and in the Curonian Lagoon and Validation of SAR-Based Ice Thickness Products. Remote Sens. (12) 3754. https://doi.org/10.3390/rs12223754
  • 21. Lavrova, O.Y., Kostianov, A.G., Mityagina, M.I., Strochkov, A.Y., Bocharova, T.Y., 2019. Remote sensing of sea ice in the Caspian Sea. Proc. SPIE 11150, Remote sensing of the Ocean, Sea Ice, Coastal Waters and Large Water Regions. https://doi.org/10.1117/12.2532136
  • 22. Lepparanta, M., Seina, A., 1985. Freezing maximum annual ice thickness and breakup of ice on the finnish coast during 1830-1984. Geophysica 21 (2), 87-104.
  • 23. Livingstone, D.M., 2000. Large-scale climatic forcing detected in historical observations of lake ice break-up. Verhandlungen der Internationalen Vereinigung fur Limnologie 27 (5), 205-220. https://doi.org/10.1080/03680770.1998.11898171
  • 24. Löptien, U., Mårtensson, S., Meier, H.E.M., Höglund, A., 2013. Longterm characteristics of simulated ice deformation in the Baltic Sea (1962—2007). JGR Ocean 118 (2), 801-815. https://doi.org/10.1002/jgrc.20089
  • 25. Makynen, M., Karvonen, J., Cheng, B., Hiltunen, M., Eriksson, P., 2020. Operational Service for maping the Baltic Sea Landfast Ice Properties. Remote Sens. 12 (24). https://doi.org/10.3390/rs12244032
  • 26. Marks, L., Bera, A., Gołek, W., 2006. Geological map of Poland on a scale of 1:50000, sheet: Łeba. Geological Publ.
  • 27. Miller, J.D., Hutchins, M., 2017. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. 12, 345-362. https://doi.org/10.1016/j.ejrh.2017.06.006
  • 28. Neves, M.C., Jerez, S., Trigo, M.R., 2019. The response of piezometric levels in Portugal to NAO, EA, and SCAND climate patterns. J. Hydrol. 568, 1105-1117. https://doi.org/10.1016/j.jhydrol.2018.11.054
  • 29. Omstedt, A., Axell, L.B., 1998. Modeling the seasonal interannual and long term variations of salinity and temperatures in the Baltic proper. Tellus A: Dynam. Meteorol. Oceanography 50, 637-652. https://doi.org/10.3402/tellusa.v50i5.14563
  • 30. Omstedt, A., Chen, D., 2001. Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. J. Geophys. Res. Oceans. 106 (C3), 4493-4500. https://doi.org/10.1029/1999jc000173
  • 31. Omstedt, A., Elken, J., Lehmann, A., Leppäranta, M., Meier, H.E.M., Myrberg, K., Rutgersson, A., 2014. Progress in physical oceanography of the Baltic Sea during the 2003-2014 period. Prog. Oceanogr. 128, 139-171. https://doi.org/10.1016/j.pocean.2014.08.010
  • 32. Pärn, O., Friedland, R., Rjazin, R., Stips, A., 2022. Regime shift in sea-ice characteristics and impact on the spring bloom in the Baltic Sea. Oceanologia 64 (2), 312-326. https://doi.org/10.1016/j.oceano.2021.12.004
  • 33. Polvani, L.M., Lantao, S., Butler, A.H., Richter, J.H., Deser, C., 2017. Distinguishing Stratospheric Sudden Warmings from ENSO as Key Drivers of Wintertime Climate Variability over the North Atlantic and Eurasia. J. Climate 30, 1959—1969. https://doi.org/10.1175/JCLI-D-16-0277.1
  • 34. Rjazin, J., Parn, O., 2020. Determining the regime shift of the Baltic Sea Ice Seasons during 1982-2016. Int. J. Marit. Sci. Technol. 67 (1), 53-59. https://doi.org/10.17818/NM/2020/1.8
  • 35. Rosa, B., 1963. On the morphological development of the Polish coast in the light of old coastal forms. Studia Societatis Scientiarum Torunesis sectio C. 5.
  • 36. Sezen, C., Pertal, T., 2017. The relation of North Atlantic Oscillation (NAO) and North Sea Caspian pattern (NCP) with climate variables in Mediterrean region of Turkey. The Eurasia Proc. Sci., Technol. Engineer. Mathematics (EPSTEM) 1, 366-371.
  • 37. Sharma, S., Magnuson, J.J., Batt, R.D., Winslow, R.A., Korhonen, J., Aono, Y., 2016. Direct observations of ice seasonality reveal changes in climate over the past 320-570 years. Sci. Rep. 6. https://www.nature.com/articles/srep25061.
  • 38. Smith, D.M., Scaife, A.A., Eade, R., Knight, J.R., 2014. Seasonal to decadal prediction of the winter North Atlantic Oscillation: emerging capability and future prospects. Q. J. Roy. Meteor. Soc. 142 (695), 611-617. https://doi.org/10.1002/qj.2479
  • 39. Soja, A.M., Kutics, K., Maracek, K., Molnár, G., Soja, G., 2014. Changes in ice phenology characteristics of two Central European steppe lakes from 1926 to 2012 - influences of localweather and large scale oscillation patterns. Climatic Change 126, 119-133. https://doi.org/10.1007/s10584-014-1199-8
  • 40. Vihma, T., Haapala, J., 2009. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 80, 129-148.
  • 41. Visbeck, M.H., Hurrel, J.W., Polvani, L., Cullen, H.M., 2001. The North Atlantic Oscillation: Past, present and future. PNAS (Proc. Nat. Acad. Sci.) 98 (23), 12876-12877.
  • 42. Weidberg, N., Bascedow, S.L., 2019. Long-term variability in overwintering copepod populations in the Lofoten Basin: The role of the North Atlantic oscillation and trophic effects. Limnol. Oceanogr. 64 (5), 2044-2058. https://doi.org/10.1002/lno.11168
  • 43. Wenta, M., Brus, D., Doulgeris, K., Vakkari, V., Herman, A., 2021. Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea). Earth Syst. Sci. Data 13, 33-34. https://doi.org/10.5194/essd-13-33-2021
  • 44. West, H., Quinn, N., Horswell, M., 2018. Regionalising the influence of the North Atlantic Oscillation on seasonal hydrological extremes in Great Britain. Geophys. Res. Abstracts 20.
  • 45. Wolski, T., Wiśniewski, B., 2022. Characteristics of seasonal changes of the Baltic Sea extreme sea levels. Oceanologia 65 (1), 151-170. https://doi.org/10.1016/j.oceano.2022.02.006
  • 46. Wrzesiński, D., Paluszkiewicz, R., 2011. Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe. Hydrol. Res. 42 (1), 30-39. https://doi.org/10.2166/nh.2010.077
  • 47. Wrzesiński, D., Ptak, M., Plewa, K., 2018. Effect of the North Atlantic Oscillation on water level fluctuations in lakes of northern Poland. Geographia Polonica 91 (2), 243-259.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5e6a2c11-8fec-4b98-b7bb-046eda6962f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.