Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A study of dolomite rock material failure using a simple small-scale blast setup is presented. Laboratory tests were conducted using disc specimens drilled with a borehole in the center. A detonation cord and a blasting cap were fitted inside the borehole to induce cracking and fracturing of the specimens. The specimens were inserted between two steel plates, which were compressed against the specimen using bolt screws. Prior to testing, the most suitable screw torque for constraining the vertical displacement of the specimen surfaces without compressing the specimen was selected based on numerical simulations. Then, the experimental tests with the blasting cap were simulated using the Johnson–Holmquist II (JH-2) material model, and the properties of the blasting cap were determined and verified in two special tests with a lead specimen. Possessing the validated model, the influence of specimen thickness on the cracking patterns was finally analyzed. This paper presents a relatively easy method for studying rock material behavior under blast loading and for validating the numerical and constitutive models used for rock simulations.
Rocznik
Tom
Strony
art. no. e141723
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
autor
- Central Mining Institute, Conformity Assessment Body, 40-166 Katowice, Poland
autor
- Military University of Technology, Faculty of Mechanical Engineering, Institute of Mechanics & Computational Engineering, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
- [1] H.Y. Shin, P. Thamburaja, A. Srinivasa, and J.N. Reddy, “On simulating impact fracture in high-strength concrete using Gra FEA,” Extrem. Mech. Lett., vol. 52, p. 101618, Apr. 2022.
- [2] C. Yi, Improved blasting results with precise initiation: Numerical simulation of small-scale tests and full-scale bench blasting, Stockholm, 2013.
- [3] C. Yi, Improved blasting results with precise initiation: Numerical simulation of sublevel caving blasting, Stockholm, 2013.
- [4] H. Hu, W. Lu, P. Yan, M. Chen, Q. Gao, and Z. Yang, “A new horizontal rock dam foundation blasting technique with a shock-reflection device arranged at the bottom of vertical borehole,” Eur. J. Environ. Civ. Eng., vol. 289, pp. 481-499, Nov. 2017.
- [5] Y. Hu, W. Lu, M. Chen, P. Yan, and Y. Zhang, “Numerical simulation of the complete rock blasting response by SPH-DAMFEM approach,” Simul. Model. Pract. Theory, vol. 56, pp. 55–68, 2015.
- [6] C.P. Yi, P. Zhang, S. Shirzadegan, and U. Nyberg, “Numerical modelling of dynamic response of underground openings under blasting based on field tests,” in Proceedings of the 8th International Symposium on Ground Support in Mining and Underground Construction, 2016.
- [7] X. Huo et al., “Rock damage control for large-diameter-hole lateral blasting excavation based on charge structure optimization,” Tunn. Undergr. Sp. Technol., vol. 106, p. 103569, 2020.
- [8] W.M. Pytel et al., “Universal approach for risk identification and evaluation in underground facilities,” Min. Sci., vol. 27, pp. 165–181, 2020.
- [9] W. Pytel, P. Mertuszka, K. Fuławka, A. Lurka, and B. Pałac-Walko, “Resultant axial stresses in instrumented rockbolts induced by dynamic effects occurred due to multi-face blasting in the working areas,” Tunn. Undergr. Sp. Technol., vol. 116, p. 104088, 2021.
- [10] I. Kukolj, B. Oberdorfer, and F. Ouchterlony, “Internal Fractures After Blasting Confined Rock and Mortar Cylinders,” BHM Berg- und Hüttenmännische Monatshefte, vol. 164, no. 10, pp. 422–430, 2019.
- [11] L.Y. Chi, Z.X. Zhang, A. Aalberg, and C.C. Li, “Experimental Investigation of Blast-Induced Fractures in Rock Cylinders,” Rock Mech. Rock Eng., vol. 52, no. 8, pp. 2569–2584, 2019.
- [12] I. Kukolj, A. Iravani, and F. Ouchterlony, “Using Small-scale Blast Tests and Numerical Modelling to Trace the Origin of Fines Generated in Blasting,” BHM Berg- und Hüttenmännische Monatshefte, vol. 163, no. 10, pp. 427–436, 2018.
- [13] P.D. Katsabanis, A. Tawadrous, C. Braun, and C. Kennedy, “Timing effects on the fragmentation of small scale blocks of granodiorite,” Fragblast, vol. 10, no. 1–2, pp. 83–93, Mar. 2006.
- [14] M.M. Dehghan Banadaki and B. Mohanty, “Numerical simulation of stress wave induced fractures in rock,” Int. J. Impact Eng., vol. 40–41, pp. 16–25, 2012.
- [15] S. Gharehdash, M. Barzegar, I.B. Palymskiy, and P.A. Fomin, “Blast induced fracture modelling using smoothed particle hydrodynamics,” Int. J. Impact Eng., vol. 135, p. 103235, Jan. 2020.
- [16] K. Liu, C.Wu, X. Li, Q. Li, J. Fang, and J. Liu, “A modified HJC model for improved dynamic response of brittle materials under blasting loads,” Comput. Geotech., vol. 123, no. December 2019, p. 103584, 2020.
- [17] H.Y. Li and G.Y. Shi, “A dynamic material model for rock materials under conditions of high confining pressures and high strain rates,” Int. J. Impact Eng., vol. 89, pp. 38–48, 2016.
- [18] Z.X. Zhang, D.F. Hou, Z. Guo, and Z. He, “Laboratory experiment of stemming impact on rock fragmentation by a high explosive,” Tunn. Undergr. Sp. Technol., vol. 97, p. 103257, 2020.
- [19] Z. Wang, H. Wang, J. Wang, and N. Tian, “Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks,” Comput. Geotech., vol. 135, p. 104172, Jul. 2021.
- [20] J. Tao, X.G. Yang, H.T. Li, J.W. Zhou, S.C. Qi, and G. Da Lu, “Numerical investigation of blast-induced rock fragmentation,” Comput. Geotech., vol. 128, p. 103846, 2020.
- [21] L.X. Xie et al., “JHR constitutive model for rock under dynamic loads,” Comput. Geotech., vol. 108, pp. 161–172, 2019.
- [22] Z. Zhu, B. Mohanty, and H. Xie, “Numerical investigation of blasting-induced crack initiation and propagation in rocks,” Int. J. Rock Mech. Min. Sci., vol. 44, no. 3, pp. 412–424, 2007.
- [23] W. Wilson and D.C. Holloway, “Fragmentation Studies In Instrumented Concrete Models,” in 6th ISRM Congress, 1987.
- [24] J.E. Field and A. Ladegaard-Pedersen, “The importance of the reflected stress wave in rock blasting,” Int. J. Rock Mech. Min. Sci., vol. 8, no. 3, pp. 213–226, 1971.
- [25] H. Jeong, B. Jeon, S. Choi, and S. Jeon, “Fracturing behavior around a blasthole in a brittle material under blasting loading,” Int. J. Impact Eng., vol. 140, p. 103562, 2020.
- [26] F. Zhu and J. Zhao, “Peridynamic modelling of blasting induced rock fractures,” J. Mech. Phys. Solids, vol. 153, p. 104469, 2021.
- [27] J. Wang, Y. Yin, and K. Esmaieli, “Numerical simulations of rock blasting damage based on laboratory-scale experiments,” J. Geophys. Eng., vol. 15, no. 6, pp. 2399–2417, Aug. 2018.
- [28] J. Wang, Y. Yin, and C. Luo, “Johnson–Holmquist-II(JH-2) Constitutive Model for Rock Materials: Parameter Determination and Application in Tunnel Smooth Blasting,” Appl. Sci., vol. 8, no. 9, p. 1675, Sep. 2018.
- [29] T.J. Holmquist, G.R. Johnson, D.E. Grady, C.M. Lopatin, and E.S. Hertel, “High strain rate properties and constitutive modeling of glass,” in Proceedings of 15th International Symposium on Ballistics, 1995, pp. 234–244.
- [30] T.J. Holmquist, D.W. Templeton, and K.D. Bishnoi, “Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications,” Int. J. Impact Eng., vol. 25, no. 3, pp. 211–231, 2001.
- [31] G.R. Johnson and T.J. Holmquist, “An improved computational constitutive model for brittle materials,” AIP Conf. Proc., vol. 309, no. 1, pp. 981–984, 1994.
- [32] P. Baranowski et al., “Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: Parameter determination, experiments and simulations,” Int. J. Impact Eng., vol. 140, p. 103543, 2020.
- [33] A. Kurzawa, D. Pyka, J. Pach, K. Jamroziak, and M. Bocian, “Numerical Modeling of the Microstructure of Ceramic-Metallic Materials,” Procedia Eng., vol. 199, pp. 1495–1500, 2017.
- [34] P. Kędzierski, A. Morka, G. Sławiński, and T. Niezgoda, “Optimization of two-component armour,” Bull. Polish Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 173–179, 2015.
- [35] G.M. Ren, H. Wu, Q. Fang, and X.Z. Kong, “Parameters of Holmquist–Johnson–Cook model for high-strength concrete like materials under projectile impact,” Int. J. Prot. Struct., vol. 8, no. 3, pp. 352–367, 2017.
- [36] T.J. Holmquist, G.R. Johnson, and W.H. Cook, “A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures,” in The 14th international symposium on ballistic, 1993, pp. 591–600.
- [37] M. Kucewicz, P. Baranowski, and J. Małachowski, “Dolomite fracture modeling using the Johnson–Holmquist concrete material model: Parameter determination and validation,” J. Rock Mech. Geotech. Eng., vol. 13, no. 2, pp. 335–350, 2021. doi: 10.1016/j.jrmge.2020.09.007.
- [38] M. Pająk, P. Baranowski, J. Janiszewski, M. Kucewicz, Ł. Mazurkiewicz, and B. Łaźniewska-Piekarczyk, “Experimental testing and 3D meso-scale numerical simulations of SCC subjected to high compression strain rates,” Constr. Build. Mater., vol. 302, p. 124379, 2021.
- [39] L. Mazurkiewicz, J. Małachowski, P. Baranowski, K. Damaziak, W. Pytel, and P. Mertuszka, “Numerical modelling of detonation in mining face cut-holes,” in Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues – 3rd Polish Congress of Mechanics, PCM 2015 and 21st International Conference on Computer Methods in Mechanics, CMM 2015, 2016, pp. 393–396.
- [40] C. Yi, J. Sjöberg, and D. Johansson, “Numerical modelling for blast-induced fragmentation in sublevel caving mines,” Tunn. Undergr. Sp. Technol., vol. 68, pp. 167–173, Sep. 2017.
- [41] L.E. Schwer and Y.D. Murray, “Continuous Surface Cap Model for Geomaterial Modeling: A New LS-DYNA Material Type,” 7 th International LS-DYNA Users Conference, Material Technology (2), 2022.
- [42] G. Morales-Alonso, J. Magnusson, H. Hansson, A. Ansell, F. Gálvez, and V. Sánchez-Gálvez, “Behaviour of concrete structural members subjected to air blast loading,” in Proceedings – 27th International Symposium on Ballistics, BALLISTICS 2013, 2013, vol. 1, pp. 936–947.
- [43] M. Kucewicz, P. Baranowski, and J. Małachowski, “Determination and validation of Karagozian-Case Concrete constitutive model parameters for numerical modeling of dolomite rock,” Int. J. Rock Mech. Min. Sci., vol. 129, p. 104302, 2020.
- [44] A. Mardalizad, R. Scazzosi, A. Manes, and M. Giglio, “Testing and numerical simulation of a medium strength rock material under unconfined compression loading,” J. Rock Mech. Geotech. Eng., vol. 10, no. 2, pp. 197–211, 2018.
- [45] L.J. Malvar, J.E. Crawford, J.W. Wesevich, and D. Simons, “A plasticity concrete material model for DYNA3D,” Int. J. Impact Eng., vol. 19, no. 9, pp. 847–873, 1997.
- [46] P. Baranowski, M. Kucewicz, J. Małachowski, and P.W. Sielicki, “Failure behavior of a concrete slab perforated by a deformable bullet,” Eng. Struct., vol. 245, p. 112832, 2021. doi: 10.1016/j.engstruct. 2021.112832.
- [47] P. Baranowski, Ł. Mazurkiewicz, J. Małachowski, and M. Pytlik, “Experimental testing and numerical simulations of blast-induced fracture of dolomite rock,” Meccanica, vol. 55, no. 12, pp. 2337–2352, 2020.
- [48] D. Xiao, Z. Zhu, R. Hu, and L. Lang, “Study of testing method for dynamic initiation toughness of sandstone under blasting loading,” Shock Vib., vol. 2018, p. 1043298, 2018.
- [49] P. Baranowski, M. Kucewicz, M. Pytlik, and J. Małachowski, “Shock-induced fracture of dolomite rock in small-scale blast tests,” J. Rock Mech. Geotech. Eng., 2022, doi: 10.1016/j.jrmge.2021.12.022.
- [50] J. Hallquist, LS-DYNA Theory Manual, vol. 19. Livermore Software Technology Corporation (LSTC), 2019.
- [51] R. Grzejda, “Finite element modeling of the contact of elements preloaded with a bolt and externally loaded with any force,” J. Comput. Appl. Math., vol. 393, p. 113534, 2021.
- [52] K. Puchała, E. Szymczyk, J. Jachimowicz, P. Bogusz, and M. Sałaciński, “The influence of selected local phenomena in CFRP laminate on global characteristics of bolted joints,” Materials (Basel)., vol. 12, no. 24, pp. 4139, 2019.
- [53] A. Kurzawa et al., “Assessment of the impact resistance of a composite material with EN AW-7075 matrix reinforced with a-Al2O3 particles using a 7.6239 mm projectile,” Materials (Basel), vol. 13, no. 3, p. 769, 2020.
- [54] M. Kucewicz, P. Baranowski, J. Małachowski,W. Trzciński, and L. Szymańczyk, “Numerical Modelling of Cylindrical Test for Determining Jones –Wilkins–Lee Equation Parameters,” in Proceedings of the 14th International Scientific Conference: Computer Aided Engineering, 2019, pp. 388–394.
- [55] G.R. Johnson and W.H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” in Proceedings 7th International Symposium on Ballistics, 1983, pp. 541–547.
- [56] P. Baranowski, R. Gieleta, J. Malachowski, K. Damaziak, and L. Mazurkiewicz, “Split Hopkinson Pressure Bar impulse experimental measurement with numerical validation,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 47–58, 2014.
- [57] P. Kędzierski, A. Morka, S. Stanisławek, and Z. Surma, “Numerical modeling of the large strain problem in the case of mushrooming projectiles,” Int. J. Impact Eng., vol. 135, p. 103403, 2019.
- [58] T. Břrvik, S. Dey, and A.H. Clausen, “Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles,” Int. J. Impact Eng., vol. 36, no. 7, pp. 948–964, Jul. 2009.
- [59] X. Wang, Z. Zhu, M. Wang, P. Ying, L. Zhou, and Y. Dong, “Study of rock dynamic fracture toughness by using VBSCSC specimens under medium-low speed impacts,” Eng. Fract. Mech., vol. 181, pp. 52–64, 2017.
- [60] L. Yu, H. Su, H. Jing, Q. Zhang, and E. Yang, “Experimental study of the mechanical behavior of sandstone affected by blasting,” Int. J. Rock Mech. Min. Sci., vol. 93, pp. 234–241, 2017.
- [61] C. Zou, J. Li, X. Zhao, and J. Zhao, “Why are tensile cracks suppressed under dynamic loading? – Transition strain rate for failure mode,” Extrem. Mech. Lett., vol. 49, p. 101506, Nov. 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d9c1668-e34d-40e1-8276-e42687ab030c