PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial distribution of arsenic in surface sediments of the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Arsenic is a ubiquitous chemical element, occurring naturally worldwide. Yet due to its global cycle, its concentrations in the marine environment are manifold higher than the terrestrial background and may pose harm to biota. This is especially relevant for the Baltic Sea, which is very susceptible to any kind of pollution. Arsenic transported to the sea is adsorbed on iron oxides or precipitating as flocculating particulates and finally bounded in sediments. Therefore, despite the contemporary emission cuts, the existing pollution remains or constantly circulates in marine habitats. The purpose of the research was to recognize the spatial distribution of arsenic in the surface sediments of the southern parts of the Baltic Sea. The number of 483 samples allowed us to prepare reliable interpolation of arsenic contents in surface sediments. Although arsenic concentrations in the Baltic Sea can be considered low, in particular areas the levels are significantly higher. The observed arsenic concentrations distribution pattern could be mostly explained by natural transportation and accumulation bottom-type distribution.
Czasopismo
Rocznik
Strony
423--433
Opis fizyczny
Bibliogr. 55 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Alcaro, L., Della Torre, C., Petochi, T., Sammarini, V., Matiddi, M., Corsi, I., Baroni, D., Giordano, P., Marino, G., Focardi, S., Amato, E., 2012. Studies on Environmental Effects of Underwater Chemical Munitions in the Southern Adriatic Sea (Mediterranean Sea). Mar. Technol. Soc. J. 46, 10-20. https://doi.org/10.4031/ MTSJ.46.3.5
  • 2. Amato, E., Alcaro, L., Corsi, I., Della Torre, C., Farchi, C., Fo cardi, S., Marino, G., Tursi, A., 2006. An integrated ecotoxicological approach to assess the effects of pollutants released by unexploded chemical ordnance dumped in the southern Adriatic (Mediterranean Sea). Mar. Biol. 149, 17-23. https://doi.org/10. 1007/s00227-005-0216-x
  • 3. Bełdowski, J., Pempkowiak, J., 2007. Mercury transformations in marine coastal sediments as derived from mercury concentration and speciation changes along source/sink pathway (Southern Baltic). Estuarine, Coast. Land Shelf Sci. 72, 370-378. https://doi.org/10.1016/j.ecss.2006.10.007
  • 4. Bełdowski, J., Szubska, M., Emelyanov, E., Garnaga, G., Drzewińska, A., Bełdowska, M., Vanninen, P., Östin, A., Fabisiak, J., 2016. Arsenic concentrations in Baltic Sea sediments close to chemical munitions dumpsites. Deep Sea Res. Pt. II 128, 114-122. https://doi.org/10.1016/j.dsr2.2015.03.001
  • 5. Bhattacharya, P., Welch, A.H., Stollenwerk, K.G., McLaughlin, M.J., Bundschuh, J., Panaullah, G., 2007. Arsenic in the environment: Biology and Chemistry. Sci. Total Environ. 379, 109-120. https://doi.org/10.1016/j.scitotenv.2007.02.037
  • 6. Borg, H., Jonsson, P., 1996. Large-scale metal distribution in Baltic Sea sediment. Mar. Pollut. Bull. 32, 8-21. https://doi.org/10.1016/0025-326X(95)00103-T
  • 7. Carstensen, K., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Science of the United States of America 111, 5628-5633. https://doi.org/10.1073/ pnas.1323156111
  • 8. Carstensen, J., Conley, J., 2019. Baltic Sea Hypoxia Takes Many Shapes and Sizes. Limnol. Oceanogr. Bull. 28 (4), 125-129. https://doi.org/10.1002/lob.10350
  • 9. Cullen, W.R., Reimer, K.J., 1989. Arsenic Speciation in the Environment. Chem. Rev. 89, 713-764. https://doi.org/10.1021/ cr00094a002
  • 10. Czub, M., Kotwicki, L., Lang, T., Sanderson, H., Klusek, Z., Grabowski, M., Szubska, M., Jakacki, J., Andrzejewski, J., Rak, D., Bełdowski, J., 2018. Deep sea habitats in the chemical warfare dumping areas of the Baltic Sea. Sci. Total Environ. 616-617, 1485-1497. https://doi.org/10.1016/j.scitotenv.2017.10.165
  • 11. Damrat, M., Zaborska, A., Zajączkowski, M., 2013. Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk, (Baltic Sea). Oceanologia 55 (4), 937-950. https://doi.org/10.5697/oc.55-4.937
  • 12. Duan, L., Song, J., Yuan, H., Li, X., Li, N., 2013. Spatio-temporal distribution and environmental risk of arsenic in sediments of the East China Sea. Chem. Geol. 340, 21-31. https://doi.org/10.1016/j.chemgeo.2012.12.009
  • 13. Emeis, K., Christiansen, C., Edelvag, K., Jahmilch, S., Kożuch, J., Laima, M., Leipe, T., Loffler, A., Lund-Hansen, L.C., Miltner, A., Pazdro, K., Pempkowiak, J., Pollehne, F., Shimmield, T., Voss, M., Witt, G., 2002. Material transport from the near shore to the basinal environment in the southern Baltic Sea-II: Synthesis of data on origin and properties of material. J. Marine Syst. 35, 151-168. https://doi.org/10.1016/S0924-7963(02)00127-6
  • 14. Emelyanov, E., Kravtsov, V., Savin, Y., Paka, V., Khalikov, I., 2010. Influence of chemical weapons and warfare agents on the metal contents in sediments in the Bornholm Basin, the Baltic Sea. Baltica 23, 77-90.
  • 15. Fabisiak, J., Jurczak, W., Szubrycht, W., Zaremba, M., 2018. Ecological Safety of the Baltic Sea in the Aspects of Corrosive Reprocessing of Containers with Toxic Warfare Agents. J. KONBiN 45, 27-44. https://doi.org/10.2478/jok-2018-0002
  • 16. Flora, S.J.S. (Ed.), 2015, Handbook on Arsenic Toxicology. Elsevier, 723 pp. https://doi.org/10.1016/B978-0-12-418688-0.00028-9
  • 17. Folk, R.L., Ward, W.C., 1957. Brazos River Bar: A study in the Significance of Grain Size Parameters. J. Sediment. Petrol. 27, 3-26. https://doi.org/10.1306/ 74D70646-2B21-11D7-8648000102C1865D
  • 18. Galasso, J.L., Sigel, F.R., Kravitz, J.H., 2000. Heavy metals in eight 1965 cores from Novaya Zemlya Trough, Kara Sea, Russian Arctic. Mar. Pollut. Bull. 40, 839-852. https://doi.org/10.1016/ S0025-326X(00)00080-1
  • 19. Garnaga, G., Wyse, E., Azemard, S., Stankevičius, A., de Mora, S., 2006. Arsenic in sediments from the southeastern Baltic Sea. Environ. Poll. 144, 855-861. https://doi.org/10.1016/j.envpol. 2006.02.013
  • 20. GEBCO Bathymetric Compilation Group, 2019. The GEBCO_2019 Grid - a continuous terrain model of the global oceans and land. British Oceanographic Data Centre, National Oceanography Centre, NERC, UK. https://doi.org/10.5285/ 836f016a-33be-6ddc-e053-6c86abc0788e
  • 21. Getis, A., Ord, J.K., 1992. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 24 (3), 189-206. https://doi. org/10.1111/j.1538-4632.1992.tb00261.x
  • 22. Hannerz, F., Destouni, G., 2006. G. Spatial characterization of the Baltic Sea drainage basin and its unmonitored catchments. Ambio 35 (5), 214-219. https://doi.org/10.1579/05-A-022R.1
  • 23. Hansson, M., Viktorsson, L., Andersson, L., 2018. Oxygen Survey in the Baltic Sea 2018 - Extent of Anoxia an Hypoxia, 1960-2018, Report Oceanography no 65. Swedish Meteorological and Hydrological Institute, Göteborg, Sweden. HELCOM Balance, 2007. Baltic Sea Management - Nature Conservation and Sustainable Development of the Ecosystem through Spatial Planning project. https://balance-eu.org/
  • 24. Kabata-Pendias, A., Pendias, H., 1999. Biogeochemia pierwiastków ´sladowych. Wydawnictwo Naukowe PWN, Warszawa, 400 pp.
  • 25. Kalia, K., Khambholja, D.B., 2015. Arsenic contents and its bio transformation in the marine environment. In: Flora, S.J.S. (Ed.), Handbook of Arsenic Toxicology. Elsevier, 675-700.
  • 26. Kasperek, T., 1997. Chemical Weapons Dumped in the Baltic Sea. ECE, Torun, ´ 121 pp. Khalikov, I.S., Savin, Y.I., 2011. Arsenic Content in Water and Bottom Sediments in the Areas of Chemical Weapon Dumps in the Bornholm Basin of the Baltic Sea. Russ. Meteorol. Hydro+ 36, 315-323.
  • 27. Knobloch, T., Bełdowski, J., Böttcher, C., Söderström, M., Rühl, N., Sternheim, J., 2013. Chemical Munitions Dumped in the Baltic Sea. Report of the ad hoc Expert Group to Update and Review the Existing Information on Dumped Chemical Munitionss in the Baltic Sea (HELCOM MUNI) Baltic Sea Environmental Proceedings. HELCOM, Baltic Sea Environ. Proc. 142, 128 pp.
  • 28. Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P.O.J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm, A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2022. Baltic Earth Assessment Report on the biogeochemistry of the Baltic Sea. Earth Syst. Dynam. 13 (1), 633-685. https://doi.org/10.5194/ esd-13-633-2022
  • 29. Li, L., Pohl, C., Schulz-Bull, D., Cao, X.-H., Naush, G., Zhang, J., 2018. Revisiting the biogeochemistry of arsenic in the Baltic Sea: Impact of anthropogenic activity. Sci. Total Environ. 613-614, 557-568. https://doi.org/10.1016/j.scitotenv.2017.09.029
  • 30. Loska, K., Wiechuła, D., 2006. Comparison of Sample Digestion Procedures for the Determination of Arsenic in Bottom Sediment Using Hydride Generation AAS. Microchimica Acta 154, 235-240. https://doi.org/10.1007/s00604-006-581-2
  • 31. Mamindy-Pajany, Y., Hurel, C., Géret, F., Galgani, F., Battaglia-Brunet, F., Marmier, N., 2013. Arsenic in marine sediments from French Mediterranean ports: geochemical partitioning, bioavailability and ecotoxicology. Chemosphere 90 (11), 2730-2736. https://doi.org/10.1016/j.chemosphere.2012.11.056
  • 32. Mattila, J., Kankaanpäá, H., Ilus, E., 2006. Estimation of recent sediment accumulation rates in the Baltic Sea using artificial radionuclide 137Cs and 239,240Pu as time markers. Boreal Environ. Res. 11, 95-107.
  • 33. MERCW, 2006. Modelling of Ecological Risk Related to Sea-Dumped Chemical Weapons — Synthesis paper on available data. http:// www.environet.eu/pub/pubwis/rura/20061223102448.pdf (accessed on-line on 21.11.2022).
  • 34. Missiaen, T., Söderström, M., Popescu, I., Vanninen, P., 2010. Evaluation of a chemical munitions dumpsite in the Baltic Sea based on geophysical and chemical investigations. Sci. Total Environ. 408, 3536-3553. https://doi.org/10.1016/j.scitotenv.2010.04. 056
  • 35. Ord, J.K., Getis, A., 1995. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 27 (4), 286-306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
  • 36. Pempkowiak, J., Cossa, D., Sikora, A., Sanjuan, J., 1998. Mercury in water and sediments of the southern Baltic Sea. Sci. Total Environ. 213, 185-192. https://doi.org/10.1016/S0048-9697(98) 00091-6
  • 37. Preis, S., 1997. Environmental problems of the Baltic Sea region, Scietific, Environmenal and Political Issues in the Circum-Caspian Region. NATO ASI Series 29, 227-244. https://doi.org/10.1007/978-94-011-5502-1
  • 38. Salminen, R. (Ed.), 2005. Geochemical atlas of Europe (accessed online on 21.11.2022). Sanderson, H., Fauser, P., Thomsen, M., Sørensen, P.B., 2008. Screening level fish community risk assessment of chemical war fare agents in the Baltic Sea. J. Hazard. Mater. 154, 846-857. https://doi.org/10.1016/j.jhazmat.2007.10.117
  • 39. Shahabi-Ghahfarokhi, S., Åström, M., Josefsson, S., Apler, A., Ketzer, M., 2021. Background concentrations and extent of Cu, As, Co, and U contamination in Baltic Sea sediments. J. Sea Res. 176. https://doi.org/10.1016/j.seares.2021.102100
  • 40. Shahabi-Ghahfarokhi, S., Rahmati-Abkenar, M., Jaeger, L., Josefsson, S., Djerf, H., Yu, C., Åström, M., Ketzer, M., 2022. The response of metal mobilization and distribution to reoxygenation in Baltic Sea anoxic sediments. Sci. Total Environ. 837. https://doi.org/10.1016/j.scitotenv.2022.155809
  • 41. Siegel, F.R., Kravitz, J.H., Galasso, J.J., 2001. Arsenic and mercury contamination in 31 cores taken in 1965. St. Anna Trough, Kara Sea, Arctic Ocean. Environ. Geol. 40, 528-542. https://doi.org/ 10.1007/s002540000194
  • 42. Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (Eds.), 2017, Biological Oceanography of the Baltic Sea. Springer, 683 pp. https://doi.org/10.1007/978-94-007-0668-2
  • 43. Suplińska, M.M., Pietrzak-Flis, Z., 2008. Sedimentation rates and dating of bottom sediments in the Southern Baltic Sea region. Nukleonika 53, 105-111.
  • 44. Sutherland, R.A., 1998. Loss-on-ignition estimates of organic matter and relationships to organic carbon in fluvial bed sediments. Hydrobiologia 389, 153-167. https://doi.org/10.1023/A:1003570219018
  • 45. Szubska, M., 2018. Arsenic in the environment of the Baltic Sea - a review. In: Zieliński, T., Sagan, I., Surosz, W. (Eds.), Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet, Earth and Planetary Sciences Series. Springer, 111-131. https://doi.org/10.1007/978-3-319-71788-3_9
  • 46. Tomlinson, M.S., De Carlo, E.H., 2016. Occurrence and possible sources of arsenic in seafloor sediments surrounding seadisposed munitions and chemical agents near O’ahu, Hawai’I. Deep-Sea Res. Pt. II 128, 70-84. https://doi.org/10.1016/j. dsr2.2014.11.022
  • 47. Uścinowicz, S. (Ed.), 2011, Geochemistry of Baltic Sea surface sediments. Polish Geological Institute - National Research Institute, Warsaw, 356 pp. Vallius, H., 2015. Applying sediment quality guidelines on soft sediments of the Gulf of Finland, Baltic Sea. Mar. Pollut. Bull. 98, 314-319. https://doi.org/10.1016/j.marpolbul.2015.09.052
  • 48. Vallius, H., 2014. Heavy metals concentrations in sediment cores from the northern Baltic Sea: Declines in the last two decades. Mar. Pollut. Bull. 78, 359-364. https://doi.org/10.1016/j. marpolbul.2013.11.017
  • 49. Vallius, H., 2012. Arsenic and heavy metal distribution in the bot tom sediments of the Gulf of Finland through the last decades. Baltica 25, 23-32. https://doi.org/10.5200/baltica.2012.25.02
  • 50. Vallius, H., Lehto, O., 1998. The distribution of some heavy metals and arsenic in recent sediments from the eastern Gulf of Finland. Appl. Geochem. 13, 369-377.
  • 51. Vallius, H., Leivuori, M., 1999. The distribution of heavy metals and arsenic in recent sediments in the Gulf of Finland. Boreal Environ. Res. 4, 19-29.
  • 52. Winogradow, A., Pempkowiak, J., 2014. Organic carbon burial rates in the Baltic Sea sediments. Estuar. Coastal Shelf Sci. 138, 27- 36. https://doi.org/10.1016/j.ecss.2013.12.001
  • 53. Whalley, C., Rowlatt, S., Bennett, M., Lovell, D., 1999. Total arsenic in sediments from the western North Sea and the Humber estuary. Mar. Pollut. Bull. 38 (5), 394-400. https://doi.org/10.1016/S0025-326X(98)00158-1
  • 54. Yli-Hemminki, P., Sara-Aho, T., Jørgensen, K., Lehtoranta, J., 2016. Iron-manganese concretions contribute to benthic release of phosphorus and arsenic in anoxic conditions in the Baltic Sea. J. Soil. Sediment. 16, 2138-2152. https://doi.org/10.1007/ s11368-016-1426-1
  • 55. Zaborska, A., Beszczyńska-Möller, A., Włodarska-Kowalczuk, M., 2017. History of heavy metal accumulation in the Svalbard area: distribution, origin and transport pathways. Environ. Pollut. 231, 437-450. https://doi.org/10.1016/j.envpol.2017.08.042.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5d1dd90f-8cb6-481d-996f-29270225860e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.