PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Coupled Eulerian-Lagrangian Analysis of the KOBO Extrusion Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The KOBO extrusion is an unconventional elastic-plastic deformation process in which the phenomenon of chang- ing a path of plastic deformation due to die cyclic oscillations by a given angle and with a given frequency is applied. As the result of the application of the oscillating rotary motion of the die, the reduction of the extrusion force was obtained. The numerical study of the KOBO extrusion of metallic materials was presented in this paper. The three-dimensional coupled Eulerian-Lagrangian (CEL) analysis was applied. The relationship between the extrusion force and the punch displacement during the KOBO process was achieved. The effective plastic strain distribution in the butt was found. The results of the numerical computations were compared with the experimen- tal data. The influence of the material hardening parameters on the cyclic loading phenomena (ratcheting, mean stress relaxation) in terms of the course of the KOBO extrusion was also examined. The proper determination of the material hardening parameters can help to optimize the KOBO process in terms of the reduction the extrusion force and the choice of the amount of die oscillations.
Twórcy
  • Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Materials Forming and Processing, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Sun Y.D., Chen Q.R. Numerical simulation of extrusion process and die structure optimization for a complex magnesium doorframe. The International Journal of Advanced Manufacturing Technology, 80, 2015, 495-506.
  • 2. Łyszkowski R., Łazińska M., Zasada D. The Influence of A Cross-Channel Extrusion Process on The Microstructure and Properties of Copper. Metals, 12, 2019, 3995.
  • 3. Bochniak W., Korbel A., Ostachowski P., Ziółkiewicz S., Borowski J. Wyciskanie metali i stopów metodą KOBO. Obróbka Plastyczna Metali, 24(2), 2013, 83-97.
  • 4. Pawłowska B., Śliwa R.E., Zwolak M. Posibilities to obtain products from 2024 and 7075 chips in the process of consolidation by KOBO extrusion. Archives of Metallurgy and Materials, 64, 2019, 1213-1221.
  • 5. Bochniak W., Korbel A. Lüders deformation and superplastic flow of metals extruded by KOBO method. Philosophical Magazine, 93, 2013, 1883–1913.
  • 6. Rozwalka J., Płaczek G., Andrzejewski D. Wypływ procesu KOBO na właściwości stopu CuCr1Zr. Archives of Metallurgy and Materials, 28(2), 2017, 107-122.
  • 7. Arentoft M., Gronostajski Z., Niechajowicz A., Wanheim T. Physical and mathematical modelling of extrusion process. Journal of Materials Processing Technology, 106(1-3), 2000, 2-7.
  • 8. Willams A.J., Croft T.N., Cross M. Computational modelling of metal extrusion and forging. Journal of Materials Processing Technology, 125-126, 2002, 573-582.
  • 9. Ayer Ö., Özmen B.G., Karakaya I. An Optimization Study for Bridge Design of a Porthole Extrusion Die. Advances in Science and Technology Research Journal, 13(4), 2019, 270-275.
  • 10. Winiarski G., Bulzak T.A., Wójcik Ł., Szala M. Effect of Tool Kinematics on Tube Flanging by Extrusion with a Moving Sleeve. Advances in Science and Technology Research Journal, 13(3), 2019, 210-216.
  • 11. Kowalczyk-Gajewska K., Stupkiewicz S. Modelling of texture evolution in KOBO extrusion process. Archives of Metallurgy and Materials, 58(1), 2013, 113-118.
  • 12. Gusak A., Danielewski M., Korbel A., Bochniak M., Storozhuk N. Elementary model of severe plastic deformation by KoBo process. Journal of Applied Physics, 115, 2014, 034905.
  • 13. Qui G., Henke S., Grabe J. Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformation. Computers and Geotechnics, 38(1), 2011, 30-39.
  • 14. Cremonesi M., Franci A., Idelsohn S., Oñate E. A state of the Art Review of the Particle Finite Element Method (PFEM). Archives of Computational Methods in Engineering, 27, 2020, 1709-1735.
  • 15. Ryzińska G., Śliwa R. Ductile fracture phenomenon during extrusion of bimetal rods. Archives of Metallurgy and Materials, 51(1), 2006, 109-118.
  • 16. Ryzińska G., Śliwa R. The theoretical and experimental researches of Pb-Al composite materials extrusion. Metalurgija, 51(3), 2012, 293-297.
  • 17. Qiu G., Henke S., Grabe J. Applications of Coupled Eulerian-Lagrangian Method to Geotechnical Problems with Large Deformations. Available online: http://www.simulia.com/download/pdf2009/ Qiu_SCC2009.pdf (access: 10 October 2020).
  • 18. Després B. Numerical Methods for Eulerian and Lagrangian Conservation Laws. Springer, 2017.
  • 19. Alizadeh A., Jafarmadar S., Zekri H.J. Use of One and Two Horizontal Plates to Reduce the Drag Force on the Rigid Cylinder Located Inside the Channel: Approach of the Immersed Interface Method. Advances in Science and Technology Research Journal,, 13(4), 2019, 188-193.
  • 20. Ryzińska G., Skrzat A., Śliwa R. Sprzężona analiza Eulera-Lagrange’a w modelowaniu procesu wyciskania. Obróbka Plastyczna Metali, 26(1), 2015, 73-92.
  • 21. Ko J., Jeong S., Kim J. Application of a Coupled Eulerian-Lagrangian Technique on Constructability Problems of Site on Very Soft Soil. Applied Sciences, 7, 2017, 1080.
  • 22. Ducobu F., Arrazola P.J., Rivière-Lorphèvre E., Ortiz deZarate G., Madariaga A., Filippi E. The CEL Method as an Alternative to the Current Modelling Approaches for Ti6Al4V Orthogonal Cutting Simulation. Procedia CIRP, 58, 2017, 245-250.
  • 23. Skrzat A. Application of Coupled Eulerian-Lagrangian Approach in Metal Forming Simulations. Zeszyty Naukowe Politechniki Rzeszowskiej seria Mechanika, 84(4/12), 2012, 25-35.
  • 24. Benson D.J. A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Computational Mechanics, 15, 1995, 558-571.
  • 25. Benson D.J., Okazawa S. Contact in a multi-material Eulerian finite element formulation. Computer Methods in Applied Mechanics and Engineering, 193, 2004, 4277-4298.
  • 26. Bakroon M., Aubram D., Rackwitz F. Geotechnical Large Deformation Numerical Analysis Using Implicit and Explicit Integration. Proc. of 3rd International Conference on New Advances in Civil Engineering, Helsinki, Finland 2017, 26-36.
  • 27. Söderlind G. Numerical Methods for Different Equations. An Introduction to Scientific Computing. Springer, 2017.
  • 28. Sherburn J., Hammons M.I., Roth M.J. Modeling finite thickness slab perforation using a coupled Eulerian–Lagrangian approach. International Journal of Solids and Structures, 51(25-26), 2014, 4406-4413.
  • 29. Dunne F., Petrinic N. Introduction to Computational Plasticity. Oxford University Press, 2005.
  • 30. Wójcik M., Skrzat A. The application of Chaboche model in uniaxial ratcheting simulations. Advances in Manufacturing Science and Technology, 44(2), 2020, 57-61.
  • 31. Skrzat A., Wójcik M., Bąk Ł. Fuzzy logic enhancement of material strain hardening data obtained in the Heyer’s test. Archives of Metallurgy and Materials, 64(3), 2019, 1059-1065.
  • 32. Wójcik M., Skrzat A. Fuzzy logic enhancement of material hardening parameters obtained from tension-compression test. Continuum Mechanics and Thermodynamics, 32, 2020, 959-969.
  • 33. Wójcik M., Skrzat A. Identification of ChabocheLemaitre combined isotropic-kinematic hardening model parameters assisted by the fuzzy logic analysis. Acta Mechanica (in press).
  • 34. https://classes.engineering.wustl.edu/2009/spring/ mase5513/abaqus/docs/v6.6/books/bmk/default.htm?startat=ch03s02ach162.html (access: 29.11.2020).
  • 35. Möller B., Beer M. Fuzzy Randomness. Uncertainty in Civil Engineering and Computational Mechanics. Springer, 2004.
  • 36. Skrzat A., Wójcik M. The application of fuzzy logic in engineering applications. ZN Mechanika, 298(90/4), 2018, 505-518.
  • 37. Bolotin A. Quantum mechanical approach to fuzzy logic modelling. Mathematical and Computer Modelling, 34(7-8), 2001, 937-945.
  • 38. Paul S.K., Sivaprasad S., Dhar S., Tarafder S. True stress control asymmetric cyclic plastic behavior in SA333 C–Mn steel. International Journal of Pressure and Pipping, 87, 2010, 440-446.
  • 39. Paul S.K. A critical review of experimental aspects in ratcheting fatigue: microstructure to specimen to component. Journal of Materials Research and Technology, 8(5), 2019, 4894-4914.
  • 40. Xu L.-Y., Fan J.-S., Yang Y., Wang C. Ratcheting assessment of low yield point steel BLY160: Experimental analysis and constitutive modelling. Mechanics of Materials, 148, 2020, 103460.
  • 41. Li H., Kang G., Yu C. Modeling uniaxial ratchetting of magnesium alloys by a new crystal plasticity considering dislocation slipping, twinnung and detwinning mechanisms. International Journal of Mechanical Sciences, 179, 2020, 105660.
  • 42. Karolczuk A. Ratcheting simulation in a titanium-steel bimetallic plate based on the Chaboche hardening model. Acta Mechanica et Automatica, 10(4), 2016, 265-270.
  • 43. Tian J., Yang Y., Zhang L.-P., Shao X.-J., Du J., Kan Q.-H. Ratcheting Behavior of SA508-3 Steel at Elevated Temperature: Experimental Observation and Simulation. Acta Metallurgica Sinica (English Letters), 30, 2017, 822-828.
  • 44. Skrzat A., Wójcik M. An identification of the material hardening parameters for cyclic loading – experimental and numerical studies. Archives of Metallurgy and Materials, 65(2), 2020, 779-786.
  • 45. Wang C.H., Rose L.R.F. Transient and steady-state deformation at notch root under cyclic loading. Mechanics of Materials, 30(3), 1998, 229-241.
  • 46. Hu W., Wang C.H., Barter S. Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050. DSTO Aeronautical and Maritime Research Laboratory, 1999.
  • 47. Shit J., Dhar S., Acharyya S. Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. International Journal of Engineering, Science and Technology, 2(4), 2010, 71-84.
  • 48. Wallbrink C., Hu W.AStrain-Life Module for CGAP: Theory, User Guide and Examples. DSTO Defence Science and Technology Organisation, 2010.
  • 49. Paul S.K., Stanford N., Taylor A., Hilditch T. The effect of low cycle fatigue, ratcheting and mean stress relaxation on stress-strain response and microstructural development in a dual phase steel. International Journal of Fatigue, 80, 2015, 341-348.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c80e3a7-d512-4b96-aa31-a9dd3f6350f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.