PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of HE and ECAP processes on changes in microstructure and mechanical properties in copper, iron and zinc

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research presented in this paper concerns the influence of the rate of plastic deformation generated directly in the processes of severe plastic deformations on the microstructure and properties of three metals: copper, iron and zinc. The equal channel angular pressing (ECAP) method was used, and it was performed at a low plastic deformation rate of ∼ 0.04 s−1. The high plastic strain rate was obtained using the hydrostatic extrusion (HE) method with the deformation rate at the level of ∼ 170 s−1. For all three tested materials different characteristic effects were demonstrated at the applied deformation rates. The smallest differences in the mechanical properties were observed in copper, despite the dynamic recrystallization processes that occurred in the HE process. In Armco iron samples, dynamic recovery processes in the range of high plastic deformation rates resulted in lower mechanical properties. The most significant effects were obtained for pure zinc, where, regardless of the method used, the microstructure was clearly transformed into bimodal after the ECAP process, and homogenized and refined after the HE process. After the HE process, the material was transformed from a brittle state to a plastic state and the highest mechanical properties were obtained.
Rocznik
Strony
art. no. e145563
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
  • Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
  • Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokołowska 29/37, 01-142 Warsaw, Poland
Bibliografia
  • [1] A.K. Ghosh, “The Influence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming,” J. Eng. Mater. Technol., vol. 99, no. 3, pp. 264–274, 1977, doi: 10.1115/1.3443530.
  • [2] J.M. Yuan and V.P.W. Shim, “Tensile response of ductile α-titanium at moderately high strain rates,” Int. J. Solids Struct., vol. 39, no. 1, pp. 213–224, 2002, doi: 10.1016/S0020-7683(01)00214-1.
  • [3] V.M. Segal, “Materials processing by simple shear,” Mater. Sci. Eng. A, vol. 197, no. 2, pp. 157–164, 1995, doi: 10.1016/0921-5093(95)09705-8.
  • [4] T. Tański, P. Snopiński, and W. Borek, “Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing,” Mater. Manuf. Process., vol. 32, no. 12, pp. 1368–1374, 2017, doi: 10.1080/10426914.2016.1257131.
  • [5] H. Jia and Y. Li, “Texture evolution of an Al-8Zn alloy during ECAP and post-ECAP isothermal annealing,” Mater. Charact., vol. 155, p. 109794, 2019, doi: 10.1016/j.matchar.2019.109794.
  • [6] G.I. Raab, I.S. Kodirov, D.A. Aksenova, and R.Z. Valiev, “The formation of a high-strength state in martensitic Ti Grade 4 by ECAP,” J. Alloy. Compd., vol. 922, p. 166205, 2022, doi: 10.1016/j.jallcom.2022.166205.
  • [7] K.V. Ivanov and E.V. Naidenkin, “Effect of the Velocity of Equal-Channel Angular Pressing on the Formation of the Structure of Pure Aluminum,” Phys. Metals Metallogr., vol. 106, no. 4, pp. 411–417, 2008, doi: 10.1134/S0031918X08100116.
  • [8] S.E. Mousavi, M.H. Khaleghifar, M. Meratian, B. Sadeghi, and P. Cavaliere, “Effect of the equal channel angular pressing route on the microstructural and mechanical behavior of Al-5086 alloy,” Materialia, vol. 4, pp. 310–322, 2018, doi: 10.1016/j.mtla.2018.10.007.
  • [9] P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon, “Influence of pressing speed on microstructural development in equal-channel angular pressing,” Metall. Mater. Trans. A, vol. 30, pp. 1989–1997, 1999, doi: 10.1007/s11661-999-0009-9.
  • [10] L. Olejnik, M. Kulczyk, W. Pachla, and A. Rosochowski, “Hydrostatic extrusion of UFG aluminium,” Int. J. Mater. Form., vol. 2, no. 1, pp. 621–624, 2009, doi: 10.1007/s12289-009-0508-7.
  • [11] M. Orłowska et al., “The Influence of Heat Treatment on the Mechanical Properties and Corrosion Resistance of the Ultrafine-Grained AA7075 Obtained by Hydrostatic Extrusion,” Materials, 15, no. 12, p. 4343, 2022, doi: 10.3390/ma15124343.
  • [12] S. Przybysz et al., “Anisotropy of mechanical and structural properties in the AA 6060 aluminium alloy after the hydrostatic extrusion process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 709–717, 2019, doi: 10.24425/bpasts.2019.130180.
  • [13] M. Kulczyk, J. Skiba, W. Pachla, J. Smalc-Koziorowska, S. Przybysz, and M. Przybysz, “The effect of high-pressure plastic forming on the structure and strength of AA5083 and AA5754 alloys intended for fasteners,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 903–911, 2020, doi: 10.24425/bpasts.2020.134183.
  • [14] M. Kulczyk et al., “Improved compromise between the electrical conductivity and hardness of the thermo-mechanically treated CuCrZr alloy,” Mater. Sci. Eng. A, 724, pp. 45–52, 2018, doi: 10.1016/j.msea.2018.03.004.
  • [15] B. Skowrońska, T. Chmielewski, M. Kulczyk, J. Skiba, and S. Przybysz, “Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion,” Materials, vol. 14, no. 6, p. 1537, 2021, doi: 10.3390/ma14061537.
  • [16] Ł. Maj et al., “Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method,” J. Mater. Sci. Technol., vol. 111, pp. 224–235, 2022, doi: 10.1016/j.jmst.2021.09.019.
  • [17] M. Skorupska, M. Kulczyk, S. Przybysz, J. Skiba, J. Mizeracki, and J. Ryszkowska, “Mechanical Reinforcement of Polyamide 6 by Cold Hydrostatic Extrusion,” Materials, 14, no. 20, p. 6045, 2021, doi: 10.3390/ma14206045.
  • [18] W. Pachla, J. Skiba, M. Kulczyk, and M. Przybysz, “Aparatura wysokociśnieniowa do przeróbki plastycznej materiałów z dużymi odkształceniami na zimno,” High-pressure equipment for cold severe plastic deformation working of materials, Obróbka Plastyczna Metali, vol. XXVI, no. 4, pp. 283–306, 2015, ISBN: 0867-2628. (in Polish)
  • [19] M. Kulczyk et al., “Combination of ECAP and hydrostatic extrusion for UFG microstructure generation in nickel,” Solid State Phenomena, vol. 114 , pp. 51–56, 2006, doi: 10.4028/www.scientific.net/SSP.114.51.
  • [20] M. Kulczyk, W. Pachla, A. Mazur, M. Su´s-Ryszkowska, N. Krasilnikov, and K.J. Kurzydłowski, “Producing bulk nanocrystalline materials by combined hydrostatic extrusion and equal channel angular pressing,” Mater. Sci.-Pol., vol. 25, no. 4, pp. 991–999, 2007.
  • [21] M. Kulczyk, J. Skiba, and W. Pachla, “Microstructure and mechanical properties of AA5483 treated by a combination of ECAP and hydrostatic extrusion,” Arch. Metall. Mater., vol. 59, pp. 163–166, 2014, doi: 10.2478/amm-2014-0026.
  • [22] M. Kulczyk, W. Pachla, A. Świderska-Środa, M. Suś-Ryszkowska, A. Mazur, and K.J. Kurzydłowski, “Nano- and Ultra-fine-grained Structures in Iron and Nickel induced by Hydrostatic Extrusion,” Proc. of The 9th International ESAFORM Conference on Material Forming, UK, 2006.
  • [23] A. Jarzębska et al., “A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties,” Mater. Lett., vol. 211, pp. 58–61, 2018, doi: 10.1016/j.matlet.2017.09.090.
  • [24] T. Wejrzanowski, W.L. Spychalski, K. Różniatowski, and K.J. Kurzydłowski, “Image based analysis of complex microstructures of engineering materials,” Int. J. Appl. Math. Comput. Sci., vol. 18, no. 1, pp. 33–39, 2008, doi: 10.2478/v10006-008-0003-1.
  • [25] W. Pachla et al., “Enhanced strength and toughness in ultra-fine grained 99.9% copper obtained by cryo-hydrostatic extrusion,” Mater. Charact., vol. 141, pp. 375–387, 2018, doi: 10.1016/j.matchar.2018.04.048.
  • [26] J.A. Muñoz et al., “Thermal stability of ARMCO iron processed by ECAP,” The Int. J. Adv. Manuf. Technol., vol. 98, pp. 2917–2932, 2018, doi: 10.1007/s00170-018-2353-7.
  • [27] S. Liu, D. Kent, H. Zhan, N. Doan, M. Dargush, and G. Wang, “Dynamic recrystallization of pure zinc during high strain-rate compression at ambient temperature,” Mater. Sci. Eng. A, 784, no. 11, p. 139325, 2020, doi: 10.1016/j.msea.2020.139325.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5c67ceb0-195b-4015-ab8c-fd28a51dc05c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.