Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Zinc(II) complexes removal from aqueous chloride and chloride-nitrate(V) solutions was realized using different type of sorbents such as an ion exchangers of the chelating type (Lewatit MonoPlus TP220, Purolite S984), strongly basic (Lewatit MonoPlus SR7, Purolite A400TL, Dowex PSR2, Dowex PSR3) and weakly basic (Purolite A830) anion exchangers as well as the adsorbent resin Lewatit AF5. The kinetic and equilibrium studies using the static method were carried out in order to examine the rate of zinc(II) removal as well as to obtain the maximum adsorption capacities. The obtained experimental data were analyzed by means of different kinetic and isotherm models as well as the corresponding parameters were calculated. The desorption and reuse studies (three cycles of sorption/desorption) were also discussed. Lewatit MonoPlus TP220 showed the highest efficiency of zinc(II) removal and the maximum sorption capacity was equal to 620 mg/g. The kinetics of zinc(II) sorption is well described by the pseudo-second order kinetic model. The interactions between the sorbent and zinc ions are strong because no quantitative zinc desorption was observed (40% using nitric(V) and sulfuric(VI) acids for Lewatit MonoPlus TP220).
Słowa kluczowe
Rocznik
Tom
Strony
1517--1534
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr., wz.
Twórcy
autor
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Inorganic Chemistry, M.Curie-Sklodowska Sq.2, 20-031 Lublin, Poland
Bibliografia
- ABBAS, A., AL-AMER, A. M., LAOUI, T., ALMARRI, M., KHAISHEH, M., AIEH, M. A., 2015, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141-161.
- BABILAS, D., DYDO, P., 2018, Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Sep. Purif. Technol. 192, 419-428.
- BARAKAT, M. A., 2011, New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361-377.
- BASHA, C. A., BHARINARAYANA, N. S., ANATHARAMAN, N., MEERA SHERIFF BEGUM, K. M., 2008, Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J. Hazard. Mater. 152, 71-78.
- CHATTERJEE, P. K., SENGUPTA, A. K., 2011, Interference-free detection of trace copper in the presence of EDTA and other metals using two complementary chelating polymers. Colloids Surf. A Physicochem. Eng. Asp.384, 432-441.
- DADA, A. O., OLALEKAN, A. P., OLATUNYA, A. M., DADA, O., 2012, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3, 38-45.
- GAKWISRI, Ch., RAUT, N., AL-SAADI, A. ,AL-AISRI, S., AL-AJMI, A., 2012, A critical review of removal of zinc from wastewater. Proceedings of the World Congress on Engineering 1, 1-4.
- GÎLCĂ, E., MĂICĂNEANU, A., ILEA, P., 2014, Removal of zinc ions as zinc chloride complexes from strongly acidic aqueous solutions by ionic exchange. Centr. Eur. J. Chem. 12, 821-828.
- GÎLCĂ, E. I., 2015, Zinc recovery from wastewaters by ion exchangers by ionic exchange and electrodeposition.“BABEŞ-BOLYAI” University Cluj-Napoca, PhD thesis.
- GLOE, K., STEPHAN, H., HEITZSCH, O., BRAUN, H., KIND, T., 1993, Recovery of mercury(II), zinc(II), cadmium(II) and copper(II) from effluents of incineration process.ISHEEY, J.B., WARREN, G.W. (Eds), Hydrometallurgy –Fundamentals, Technology and Innovations, Soc. Min. Metall. Exploitation, Littleton, Colorado, 845-857.
- GRABAS, K., 2009, Usuwanie jonów metali ciężkich ze ścieków przemysłowych i wód nadosadowych ze stawu „Kowary”(powiat jeleniogórski). Ochrona Środowiska, 31, 49-54.
- GRAY, L., 2006. The element zinc. Marshall Cavendish Benchmark, New York.
- HAMBIDGE, M., 2000, Human Zinc Deficiency. J.Nut. 130, 1344S–1349S.
- HELFFERICH, F., 1959. Ionenaustauscher. Weinheim: Chemie, German.
- HO, Y. S., MCKAY, G., 1999, Pseudo-second order model for sorption processes. Process Biochem. 34, 451-465.
- HORNE, R. A., HOLM, R. H., MEYERS, M. D. 1957, The adsorption of zinc(II) on anion-exchange resins. II. Stoichiometry, thermodynamics, loading studies, Dowex-2 adsorption and factors influencing the rate of the adsorption process. J. Physic. Chem. 61, 1655-1661.
- KOŁODYŃSKA, D., 2011, Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267, 175-183.
- KOŁODYŃSKA, D., SOFIŃSKA-CHMIEL, W., MENDYK, E., HUBICKI, Z., 2014, DOWEX M 4195 and LEWATIT®MonoPlus TP 220 in heavy metal ions removal from acidic streams. Sep. Sci. Technol. 49, 2003-2015.
- KONONOVA,O. N., MIKHAYLOVA, N. V., MELNIKOV, A. M., KONONOV, Y. S., 2011, Ion exchange recovery of zinc from chloride and chloride–sulfate solutions. Desalination 274, 150-155.
- LAGERGREN, S., 1898, About the theory of so-called sorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1-39.
- LEW, K., 2008, Understanding the elements of periodic table. Zinc.The Rosen Publishing Groups, New York.
- LIN, L. CH., JUANG, R. S., 2005, Ion-exchange equilibria of Cu(II) and Zn(II) from aqueous solutions with Chelex 100 and Amberlite IRC 748 resins. Chem. Eng. J. 112, 211-218.
- MAEDA, M., ITO, T., HORI, M., JOHANSSON, G., 1996, The structure of zinc chloride complexes in aqueous solution. Zeitschrift für Naturforschung A51a, 63-70.
- MAJUMDAR, J., BARUAH, B.K., DUTTA, K., 2007, Sources and characteristics of galvanizing industry effluents. J. Ind. Pollut. Control 23, 119-123.
- MIESIAC, I., 2005, Removal of zinc(II) and iron(II) from spent hydrochloric acid by means of anionic resins. Ind. Eng. Chem. Res. 44, 1004-1011.
- MISHRA, P. C., PATEL, R. K., 2009, Removal of lead and zinc ions from water by low cost adsorbents. J. Hazard. Mater. 168, 319-325.
- MIYAZAKI, M., NAKAI, M., 2011, Protonation and ion exchange equilibria of weak base anion-exchange resins. Talanta 85,1798-1804.
- MORCALI, M. H., ZEYTUNCU, B., BAYSAL, A., AKMAN, S., YUCEL, O., 2014, Adsorption of copper and zinc from sulfate media on a commercial sorbent. J. Environ. Chem. Eng. 2, 1655-1662.
- NAGAHASHI,E., OGATA,F., NAKAMURA,T., KAWASAKI,N., 2018, Removal of zinc ions from aqueous solutions by adsorption on virgin and calcined lignin. BPB Reports 1, 25-31.
- NEKOUEI, R. K., PAHLEVANI, R. K., ASSEFI, M., MAROUFI, S., SAHAJWALLA, V., 2019, Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J. Hazard. Mater.371, 389-396.
- NOULAS, CH., TZJOUVALEKAS, M., KARYOTIS, T., 2018, Zinc in soils, water and food crops. J. Trace Elem. Med. Biol. 49, 252-260.
- QIU, H., LV, L., PAN, B., ZHANG, Q., ZHANG, W., ZHANG, Q., 2009, Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A10, 716-724.
- RAJORIYA, S., KAUR, B., 2014, Adsorptive removal of zinc from waste water by natural biosorbents.Int. Eng. Sci. Inv. 3, 60-80.
- RASHED, M. N., 2013. Adsorption technique for the removal of organic pollutants from water and wastewater. In Tech, Rijeka, Chap. 7.
- REGEL-ROSOCKA, M., 2010, A review on methods of regeneration of spent pickling solutions from steel processing. J. Hazard. Mater. 177, 57-69.
- REVATHI, M., SARAVANAN, M., CHIYA, A. B., VELAN, M., 2012, Removal of copper, nickel and zinc ions from electroplating rinse water. Clean-Soil Air Wat. 40, 66-79.
- RINK, L., 2000, Zinc and the immune system. P. Nutr.Soc. 59, 541-552.
- ROOHANI, N., HURRELL, R., KELISHADI, R., SCHULIN, R., 2013, Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 18, 144-157.
- SATO, T., NAKAMURA, T., 1980, The stability constants of the aqueous chloro complexes of divalent zinc, cadmium and mercury determined by solvent extraction with tri-n-octylphosphine oxide. Hydrometallurgy 6, 3-12.
- SIMONESCU, C. M., CARMN, D., MIHAI, S., CAPATINA, C., 2012, Studies on zinc removal from wastewaters by chitosan. J. Environ. Protect. Ecol. 13, 462-465.
- SKOROKHODOV, V. I., RADIONOV, B. K., GORYAEVA, O. Y., 2004, Sorption of zinc complex ions from chloride solutions with ion exchangers. Russ. J. App. Chem. 77, 14444-14449.
- SYAFIUDDIN, A., SALMIATI, S., JONBI, J., FULAZZAKY, M. A., 2018, Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J. Environ. Manage. 218, 59-70.
- VALVERDE, L., DE LUCAS, A., GONZALEZ, M., RODRIGUEZ, J. F., 2002, Equilibrium data for the exchange of Cu2+, Cd2+, and Zn2+ions for H+on the cationic exchangerAmberlite IR-120. J. Chem. Eng. Data 47, 613-617.
- WOŁOWICZ, A., HUBICKI, Z., 2012, The use of the chelating resin of a new generation Lewatit MonoPlus TP-220 with the bis-picolylamine functional groups in the removal of selected metal ions from acidic solutions. Chem. Eng. J. 197, 493-508.
- WOŁOWICZ, A., HUBICKI, Z., 2014, Polyactrylate ion exchangers in sorption of noble and base metal ions from single and tertiary component solutions. Solv. Extr. Ion Exch. 32, 189-205.
- WOŁOWICZ, A., HUBICKI, Z., 2016a, Sorptionbehavior of Dowex PSR-2 and Dowex PSR-3 resins of different structures for metal(II) removal. Solv. Extr. Ion Exch. 34, 375-397.
- WOŁOWICZ, A., HUBICKI, Z., 2016b, Carbon-based microporous adsorber Lewatit AF 5 applicability in metal ion recovery. Micropor. Mesopor. Mater. 224, 400-414.
- ZHANG, X.G., 1996. Corrosion and electrochemistry of zinc. Plenum Press, New York.
- ZHANG, Y. L., FANG, T., YU, X. J., 2013, Adsorption of zinc and cyanide from cyanide effluents on anionic ion-exchange resin.Chem. Res. in Chin. Universities 29, 144-149.
- ZWAIN, H. M., VAKILI, M., DAHLAN, I., 2014, Waste material adsorbents for zinc removal from wastewater: a comprehensive review.Inter. J. Chem. Eng. 2014, 1-13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-58bb80d6-3424-4b6c-bab7-49d507a9f5d4