PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of Carbon Fiber Reinforced Materials for 3D Printing of Ankle Foot Orthoses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents analysis of mechanical properties of specimens fabricated by fused deposition modeling (FDM). The four of considered materials are the well-known 3D printing filaments i.e., polylactide (PLA), Nylon 12 (PA12), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate glycol (PET-G). The other four of the considered materials are composites with carbon i.e. polylactide with carbon fiber (PLA-CF), Nylon 12 with carbon fiber (PA12-CF), acrylonitrile butadiene styrene with carbon fiber (ABS-CF), polyethylene terephthalate glycol with carbon fiber (PETG-CF). The paper describes how the specimens were designed, printed, subjected to tensile testing, and examined using microscopy. The obtained data will be used to select the optimum material for the rapid manufacture of lower limb orthoses. Carbon composites were found to have better mechanical properties of their base material, but the fabrication of composite samples is much more time consuming, for the reason that the manufacturing process is not stable.
Twórcy
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Faculty of Mechanical Engineering, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Department of Computer Science and Statistics, Poznan University of Medical Sciences, ul. Fredry 10, Poznan, Poland
  • Faculty of Mechanical Engineering, University of Niš, Univerzitetski trg 2, Niš 18000, Serbia
  • Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Blv. Muncii, No. 103-105, 400641 Cluj-Napoca, Romania
Bibliografia
  • 1. Górski, F., Kuczko, W., Wichniarek, R., Hamrol, A. Mechanical properties of composite parts manufactured in FDM technology, Rapid Prototyping Journal 2018, 24(8): 1281–1287. https://doi.org/10.1108/RPJ-11-2016-0197.
  • 2. Kuczko, W., Hamrol, A., Wichniarek, R., Górski, F., Rogalewicz, M. Mechanical properties and geometric accuracy of angle-shaped parts manufactured using the FFF method, Bulletin of the Polish Academy of Sciences. Technical Sciences 2021, 69(3): e137387. https://doi.org/10.24425/bpasts.2021.137387.
  • 3. Lluch-Cerezo, J., Benavente, R., Meseguer, M. D., Gutiérrez, S.C., Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM), Procedia Manufacturing 2019, 41: 890–897. https://doi.org/10.1016/j.promfg.2019.10.012.
  • 4. Raj, R., Dixit, A.R., Łukaszewski, K., Wichniarek, R., Rybarczyk, J., Kuczko, W., Górski, F. Numerical and Experimental Mechanical Analysis of Additively Manufactured Ankle–Foot Orthoses. Materials 2022, 15: 6130. https://doi.org/10.3390/ma15176130.
  • 5. Raj, R., Dixit, A.R. Direct InkWriting of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D Print. Addit. Manufacting 2022. https://doi.org/10.1089/3dp.2021.0209.
  • 6. Kurenov, S.N., Ionita, C., Sammons, D., Demmy, T.L.. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. Cardiothoracic Surgical Education And Training 2015, 49(4): 973–979. E1.
  • 7. Witowski, J.S., Pędziwiatr, M., Major, P., Budzyński, A. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int J CARS 2017, 12: 2047–2054.
  • 8. Torres, I.O., De Luccia N. A simulator for training in endovascular aneurysm repair: The use of three dimensional printers. European Journal of Vascular and Endovascular Surgery 2017, 54(2): 247–253.
  • 9. Żukowska, M., Górski, F., Wichniarek, R., Kuczko, W. Methodology of Low Cost Rapid Manufacturing of Anatomical Models with Material Imitation of Soft Tissues. Advances in Science and Technology Research Journal 2019, 13(4): 120–128.
  • 10. Żukowska, M., Górski, F., Bromiński, G. Rapid Manufacturing and Virtual Prototyping of Presurgery Aids. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G. (eds) World Congress on Medical Physics and Biomedical Engineering, IF-MBE Proceedings 2018, 68(3). https://www.mdpi.com/2073-4360/14/19/4086.
  • 11. Targonska, S., Dobrzanska-Mizera, M., Wukczyk, M., Rewak-Soroczynska, J., Knitter, M., Dopierała, K., Andrzejewski, J., Wilglusz, R.J. New way to obtain the poly (L-lactide-co-D,L-lactide) blend filled with nanohydroxyapatite as biomaterial for 3D-printed bone-reconstruction implants. European Polymer Journal 2022, 165. https://doi.org/10.1016/j.eurpolymj.2022.110997.
  • 12. Górski, F., Rybarczyk, J., Zawadzki, P., Kuczko, W., Wierzbicka, N., Żukowska, M., Siwiec, S. Design and additive manufacturing of an individualized specialized leg orthosis MANUFACTURING 2022: Advances in Manufacturing III, 31–44, 10.1007/978-3-030-99769-4_3.
  • 13. Górski, F., Wichniarek, R., Kuczko, W., Żukowska, M., Lulkiewicz, M., Zawadzki, P. Experimental Studies on 3D Printing of Automatically Designed Customized Wrist-Hand Orthoses. Materials 2020, 13(18): 4091. https://doi.org/10.3390/ma13184091.
  • 14. Górski, F., Zawadzki, P., Wichniarek, R., Kuczko, W., Słupińska, S.., Żukowska, M. Automated Design and Rapid Manufacturing of Low-Cost Customized Upper Limb Protheses, Journal of Physics: Conference Series, 2198, https://doi.org/10.1088/1742-6596/2198/1/012040.
  • 15. Dal Maso, A., Cosmi, F. 3D-printed ankle-foot orthosis: a design method, Materials Today: Proceedings 2019, 12: 252–261. https://doi.org/10.1016/j.matpr.2019.03.122.
  • 16. Chandra, G., Pandey, A. Biodegradable bone implants in orthopedic applications: a review, Biocybernetics and Biomedical Engineering 2020, 40(2): 596–610.. https://doi.org/10.1016/j.bbe.2020.02.003.
  • 17. Chaparro-Rico B.D.M., Martinello K., Fucile, S., Cafolla, D. User-Tailored Orthosis Design for 3D Printing with PLACTIVE: A Quick Methodology, Crystals 2021, 11(5): 561. https://doi.org/10.3390/cryst11050561.
  • 18. Fafenrot, S., Grimmelsmann, N., Wortmann, M., Ehrmann, A. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 2017, 10: 1199. https://doi.org/10.3390/ma10101199.
  • 19. Richter, C., Schmülling, S., Ehrmann, A., Finsterbusch, K. FDM printing of 3D forms with embedded fibrous materials. In Design, Manufacturing and Mechatronics, Proceedings of the 2015 International Conference on Design, Manufacturing and Mechatronics (ICDMM2015), Wuhan, China, 17–18 April 2015, Shahhosseini, A.M., Ed., World Scientific: Singapore 2015, 961–969.
  • 20. Gogolewski, D., Bartkowiak, T., Kozior, T., Zmarzły, P. Multiscale analysis of surface texture quality of models manufactured by laser powder-bed fusion technology and machining from 316L steel. Materials 2021, 14: 2794. https://doi.org/10.3390/ma14112794.
  • 21. Bochnia, J., Blasiak, M., Kozior, T.A Comparative Study of the Mechanical Properties of FDM 3D Prints Made of PLA and Carbon Fiber-Reinforced PLA for Thin-Walled Applications, Materials 2021, 14(22): 7062. https://doi.org/10.3390/ma14227062.
  • 22. Liu, Z., Wang, Y., Wu, B., Cui, C., Guo, Y., Yan, C.A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int. J. Adv. Manuf. Technol. 2019, 102: 2877–2889.
  • 23. Chen, Q., Boisse, P., Park, C.H., Saouab, A., Bréard, J. Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes. Compos. Struct. 2011, 93: 1692–1703.
  • 24. Allum, J., Gleadall, A., Silberschmidt, V.V. Fracture of 3D-printed polymers: Crucial role of filament-scale geometric features. Eng. Fract. Mech. 2020, 224: 106818. https://doi.org/10.1016/j.engfracmech.2019.106818.
  • 25. Tronvoll, S.A., Vedvik, N.P., Elverum, C.W., Welo, T. A new method for assessing anisotropy in fused deposition modeled parts using computed tomography data. Int. J. Adv. Manuf. Technol. 2019, 105: 47–65. https://doi.org/10.1007/s00170-019-04081-7.
  • 26. Kozior, T., Mamun, A., Trabelsi, M., Sabantina, L., Ehrmann, A. Quality of the surface texture and mechanical properties of FDM printed samples after thermal and chemical treatment. Stroj. Vestn. J. Mech. Eng. 2020, 105–113. https://doi.org/10.5545/sv-jme.2019.6322.
  • 27. Saad, M.S., Nor, A.M., Baharudin, M.E., Zakaria, M.Z., Aiman, A. Optimization of surface roughness n FDM 3D printer using response surface methodology, particle swarm optimization, and symbiotic organism search algorithms. Int. J. Adv. Manuf. Technol. 2019, 105: 5121–5137. https://doi.org/10.1007/s00170-019-04568-3.
  • 28. Turek, P., Budzik, G., Sęp, J., Oleksy, M., Józwik, J., Przeszłowski, Ł., Paszkiewicz, A., Kochmański, Ł., Żelechowski, D. An analysis of the casting polymer mold wear manufactured using PolyJet method based on the measurement of the surface topography. Polymers 2020, 12: 3029. https://doi.org/10.3390/polym12123029.
  • 29. Kousiatza, C., Tzetzis, D., Karalekas, D. In-situ characterization of 3D printed continuous fiber reinforced composites: A methodological study using fiber Bragg grating sensors. Compos. Sci. Technol. 2019, 174: 134–141. https://doi.org/10.1016/j.compscitech.2019.02.008.
  • 30. Chaudhry, F.N., Butt, S.I., Mubashar, A., Bin Naveed, A., Imran, S.H., Faping, Z. Effect of carbon fibre on reinforcement of thermoplastics using FDM and RSM. J. Thermoplast. Compos. Mater. 2019, https://doi.org/10.1177/0892705719886891.
  • 31. Chabaud, G., Castro, M., Denoual, C., Le Duigou, A. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Addit. Manuf. 2019, 26: 94–105. https://doi.org/10.1016/j.addma.2019.01.005.
  • 32. Bochnia, J., Blasiak, M., Kozior, T. Tensile strength analysis of thin-walled polymer glass fiber reinforced samples manufactured by 3D printing technology. Polymers 2020, 12: 2783. https://doi.org/10.3390/polym12122783.
  • 33. Yi, X., Tan, Z.-J., Yu, W.-J., Li, J., Li, B.-J., Huang, B.-Y., Liao, J. Three dimensional printing of carbon/carbon composites by selective laser sintering. Carbon 2016, 96: 603–607, https://doi.org/10.1016/j.carbon.2015.09.110.
  • 34. Ahn, B.-H., Moon, G., Sun, W., Akasofu, S.-I., Chen, G.X. and Park, Y.D. Universal time variation of the Dst index and the relationship between the cumulative AL and Dst indices during geomagnetic storms. Journal of Geophysical Research 2002, 107. https://doi.org/10.1029/2002JA009257.
  • 35. Ahn S.H., Baek C., Lee S., Ahn I.S. Anisotropic tensile failure model of rapid prototyping parts - fused deposition modeling (FDM), International Journal of Modern Physics B (IJMPB) 2003, 17(8–9).
  • 36. Ahn S.H., Montero M., Odell D., Roundy S., Wright P.K. Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments, Proceedings of Rapid Prototyping and Manufacturing Conference, SME 2001.
  • 37. Ahn S.H., Montero M., Odell D., Roundy S., Wright P.K. Anisotropic material properties of fused deposition modeling (FDM) ABS, Rapid Prototyping Journal 2002, 8(4).
  • 38. Pająk E., Górski F., Wichniarek R., Dudziak A, Techniki przyrostowe i wirtualna rzeczywistość w procesach przygotowania produkcji, wyd. Promocja 21, Poznań. 2011.
  • 39. Górski F., Wichniarek R., Andrzejewski J. Wpływ orientacji części na wytrzymałość modeli z ABS wytwarzanych techniką modelowania uplastycznionym tworzywem sztucznym, Przetwórstwo Tworzyw 2012.
  • 40. Bellini A., Guceri S. Mechanical characterization of parts fabricated using fused deposition modeling, Rapid Prototyping Journal 2003, 9(4): 252–264.
  • 41. Caminero, M.A., Chacón, J.M., García-Moreno, I., Rodríguez, G.P. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling, Composites Part B 148 2018, 93–103. https://doi.org/10.1016/j.compositesb.2018.04.054.
  • 42. Choo, Y.J., Chang, M.C. Commonly used types and recent development of ankle-foot orthosis: a narrative review. Healthcare 2021, 9: 1046. https://doi.org/10.3390/HEALTHCARE9081046.
  • 43. Górski F., Wichniarek R., Kuczko W., Żukowska M., Rybarczyk J., Lulkiewicz M. Evaluation of a Prototype System of Automated Design and Rapid Manufacturing of Orthopaedic Supplies, Advances in Manufacturing III, Biomedical Engineering: Research and Technology Innovations, Industry 4.0 2022, 1–15, https://doi.org/10.1007/978-3-030-99769-4_1.
  • 44. Górski F., Rybarczyk J., Zawadzki P., Kuczko W., Wierzbicka N., Żukowska M., Siwiec S. Design and Additive Manufacturing of an Individualized Specialized Leg Orthosis, Advances in Manufacturing III, Volume 5 - Biomedical Engineering: Research and Technology Innovations, Industry 4.0 2022, 31–44. https://doi.org/10.1007/978-3-030-99769-4_3.
  • 45. Górski F., Osiński F., Żukowska M., Wierzbicka N. Environmental Impact of Additive Manufacturing for Individual Supplies, Advanced Manufacturing Processes II, Springer 2021, 384– 393.
  • 46. Shahar, F.S., Sultan, M.T.H., Shah, A.U.M., Safri, S.N.A., A Comparative Analysis be-tween Conventional Manufacturing and Additive Manufacturing of Ankle-Foot Orthosis | Applied Science and Engineering Progress. Applied Science and Engineering Progress 2020, 13: 96–103. https://doi.org/10.14416/j.asep.2020.03.002.
  • 47. Chen R.K., Jin Y., Wensman, J., Shih, A. Additive manufacturing of custom orthoses and prosthese – a review. Additive Manufacturing 2016, https://doi.org/10.1016/J.ADDMA.2016.04.002.
  • 48. Fox, J.R., Lovegreen W. Lower limb orthoses. Atlas of Orthoses and Assistive Devices 2019, 239–246. https://doi.org/10.1016/B978-0-323-48323-0.00022-6.
  • 49. Kabir, R., Sunny, Md., Ahmed, H., Rahman, M. Hand rehabilitation devices: a comprehensive systematic review, Micromachines 2022, 13(7): 1033. https://doi.org/10.3390/mi13071033.
  • 50. Tagliaferri, V., Trovalusci, F., Guarino, S., Venettacci, S. Environmental and economic analysis of FDM, SLS and MJF additive manufacturing technologies, Materials 2019, 12: 4161. https://doi.org/10.3390/ma12244161.
  • 51. Love, L.J., Kunc, V., Rios, O., Duty, C.E., Elliott, A.M., Post, B.K., Smith, R.J., Blue, C.A. The importance of carbon fiber to polymer additive manufacturing. J. Mater. Res. 2014, 29: 1893.
  • 52. Rijckaert, S., Daelemans, L., Cardon, L., Boone, M., Paepegem, W.V., De Clerck, K. Continuous fiber-reinforced aramid/PETG 3D-printed composites with high fiber loading through fused filament fabrication, Polymers 2022, 14(2): 298. https://doi.org/10.3390/polym14020298.
  • 53. Tambrallimath, V., Keshavamurthy, R., Bavan, S.D., Patil, A.Y., Yunus Khan, T.M., Badruddin, I.A., Kamangar, S. Mechanical Properties of PC-ABS-Based Graphene-Reinforced Polymer Nanocomposites Fabricated by FDM Process, Polymers 2021, 13(17): 2951. https://doi.org/10.3390/polym13172951.
  • 54. Tobalina-Baldeon, D., Sanz- Adán, F., Martinez-Calvo, M., Gomez, C., Sanz-Pena, I., Cavasa, F. Feasibility Analysis of Bolted Joints with Composite FibreReinforced Thermoplastics, Polymers 2021, 13(12): 1904. https://doi.org/10.3390/polym13121904.
  • 55. Musioł, M., Rydz, J., Janeczek, H., Kordyka, A., Andrzejewski, J., Sterzyński, T., Jurczyk, S., Cristea, M., Musiol, K., Kampik, M., Kowalczuk, M. (Bio)degradable biochar composites -Studies on degradation and electrostatic properties, Materials science and engineering: B 2022, 275: 115515,. https://doi.org/10.1016/j.mseb.2021.115515.
  • 56. Wei, S., Ma, J-X., Xu, L., Gu, X-S., Ma, X-L. Biodegradable materials for bone defect repair, Military Medical Research 2020, 7(54).
  • 57. Farah, S., Anderson, D. G., Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review, ADR-13025; 26, https://doi.org/10.1016/j.addr.2016.06.012.
  • 58. Kumar, V., Ahuja, I.S., Singh, R. Multi-Factor Optimization for Preparation of mechanical blended and chemical assisted mechanical blended ABS-graphene composite for 3D printing, Encyclopedia of Materials: Plastics and Polymers 2022, 1: 281–287. https://doi.org/10.1016/B978-0-12-820352-1.00216-9.
  • 59. Touris, A., Turcios, A., Mintz, E., Pulugurtha, S.R., Thor, P., Jolly, M., Jalgaonkar, U. Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results Mater. 2020, 8: 100149. https://doi.org/10.1016/j.rinma.2020.100149
  • 60. Conway, K.M., Pataky, G.J. Crazing in additively manufactured acrylonitrile butadiene styrene. Engineering Fracture Mechanics 2019, 211: 114–124.
  • 61. Maqsood, N., Rimašauskas, M. Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Composites Part C: Open Access 2021, 4: 100112.
  • 62. Istrate, B., Munteanu, C., Antoniac, I., Lupescu, S. Current research studies of Mg–Ca–Zn biodegradable alloys used as orthopedic implants—review, Crystals 2022, 12(10): 1468. https://doi.org/10.3390/cryst12101468.
  • 63. Standard Terminology for Additive Manufacturing Technologies. ASTM International; West Conshohocken, PA, USA: 2012. [Google Scholar].
  • 64. Kłonica, M., Analysis of the effect of selected factors on the strength of adhesive joints, 2018 IOP Conf. Ser.: Mater. Sci. Eng. 393 012041, https://doi.org/10.1088/1757-899X/393/1/012041.
  • 65. Skoczylas, J., Kłonica, M., Samborski, S. A study on the FRP composite’s matrix damage resistance by means of elastic wave propagation analysis, Composite Structures 2022, 297: 115935. https://doi.org/10.1016/j.compstruct.2022.115935.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-57a4458c-4169-4500-90ce-a86e6fe73860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.