PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Scaling relationships of leaf traits do not change among months in a temperate shrub species

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaf traits scaling relationships were compared in different months (May, June, July and August) in a temperate shrub species, Vitex negundo Linn. var. heterophylla (Franch.) Rehd. Leaf traits variation and the impact of environment were also studied. Our results showed that specific leaf area (SLA), leaf nitrogen content (Nmass), leaf phosphorus content (Pmass) and leaf chlorophyll content (Chlmass) were positively correlated, and all of the pairwise relationships showed a common standardized major axis (SMA) slope in different months. The variation of SLA, chlorophyll a content (Chlmass a), chlorophyll b content (Chlmass b), Chlmass a/b and maximum quantum yield of PSII (Fv/Fm) were mainly habitat-dependent, while the variation of Pmass and Nmass/Pmass were mainly month-dependent. Redundancy analysis (RDA) was used to further explore the relationships between leaf traits and environmental factors. We found that plants under shade (the relative photosynthetic photon flux density was about 10%) developed light-capturing behavior at leaf level (higher SLA) and cellular level (higher Chlmass/Nmass and lower Chlmass a/b). The increased Nmass/Pmass with month was mainly resulted from the large absorption of soil nitrogen and the decrease of soil pH. In a word, our study indicates that species may not have fundamentally different carbon capture strategies in different months. Variation of different leaf traits are related to different environmental factors in the field.
Słowa kluczowe
Rocznik
Strony
23--34
Opis fizyczny
Bibliogr. 42 poz., il.
Twórcy
autor
  • Institute of Environmental Research, Shandong University, Ji’nan 250100, China
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Ji’nan, 250100, China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Ji’nan, 250100, China
autor
  • Institute of Environmental Research, Shandong University, Ji’nan 250100, China
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Ji’nan, 250100, China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Ji’nan, 250100, China
autor
  • Clinical College of Tianjin Medical University, Tianjin, 300270, China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Ji’nan, 250100, China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Ji’nan, 250100, China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Ji’nan, 250100, China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Ji’nan, 250100, China
autor
  • Institute of Ecology and Biodiversity, College of Life Sciences, Shandong University, Ji’nan, 250100, China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Ji’nan, 250100, China
Bibliografia
  • 1. An H., Shangguan Z. 2010 – Leaf stoichiometric trait and specific leaf area of dominant species in the secondary succession of the Loess Planteau – Pol. J. Ecol. 58: 103–113.
  • 2. Aranda I., Castro L., Pardos M., Gil L., Pardos JA. 2005 – Effects of the interaction between drought and shade on water relations, gas exchange and morphyological traits in cork oak (Quercus suber L.) seedlings – Forest Ecol. Manag. 210: 117–129.
  • 3. Aranda I., Robson T.M., Rodriguez-Calcerrada J., Valladares F. 2008 – Limited capacity to cope with excessive light in the open and with seasonal drought in the shade in Mediterranean Ilex aquifolium populations - Trees, 22: 375–384.
  • 4. Bao S.D. 2000 – Soil analysis in agricultural chemistry. Ed. 3 – China Agriculture Press, Beijing, China (in Chinese).
  • 5. Cornelissen J.H.C., Pérez-Harguindeguy N., Díaz S., Grime J.P., Marzano B., Cabido M., Vendramini F., Cerabolini B. 1999 – Leaf Structure and defence control litter decomposition rate across species and life forms in regional floras on two continents - New Phytol. 143: 191–200.
  • 6. Du N., Guo W.H., Zhang X.R., Wang R.Q. 2010 – Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress – Acta Physiol. Plant. 32: 839–848.
  • 7. Evans J.R., Poorter H. 2001 – Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain – Plant Cell Environ. 24: 755–767.
  • 8. Garnier E., Cordonnier P., Guillerm J.L., Sonié L. 1997 – Specific leaf area and leaf nitrogen concentratoin in annual and perennial grass species growing in Mediterranean old-fields – Oecologia, 111: 490–498.
  • 9. Han W.X., Fang J.Y., Guo D.L., Zhang Y. 2005 – Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China – New Phytol. 168: 377–385.
  • 10. Hansen U., Schneiderheinze J., Rank B. 2002 – Is the lower shade tolerance of Scots pine, relative to pedunculate oak, related to the composition of photosynthesis pigments? - Photosynthetica, 40: 369–374.
  • 11. He J.S., Wang Z., Wang X., Schmid B., Zuo W., Zhou M., Zheng C., Wang M., Fang J. 2006 – A test of the generality of leaf trait relationships on the Tibetan Plateau – New Phytol. 170: 835–848.
  • 12. Jurik T.W. 1986 – Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species – Amer. J. Bot. 73: 1083–1092.
  • 13. Kitaoka S., Koike T. 2004 – Invasion of broad-leaf tree species into a larch plantation: seasonal light environment, photosynthesis and nitrogen allocation – Physiol. Plant. 121: 604–611.
  • 14. Kitaoka S., Koike T. 2005 – Seasonal and yearly variations in light use and nitrogen use by seedlings of four deciduous broad-leaved tree species invading larch plantations – Tree Physiol. 25: 467–475.
  • 15. Knoepp J.D., Swank W.T. 2002 – Using soil temperature and moisture to predict forest soil nitrogen mineralization – Biol. Fert. Soils, 36: 177–182.
  • 16. Koerselman W., Meuleman A.F.M. 1996 - The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation – J. Appl. Ecol. 33: 1441–1450.
  • 17. Leishman M.R., Haslehurst T., Ares A., Baruch Z. 2007 – Leaf trait relationships of native and invasive plants: community- and global-scale comparisons – New Phytol. 176: 635–643.
  • 18. Lichtenthaler H.K., Wellburn A.R. 1983 - Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents – Biochem. Soc. Trans. 603: 591–592.
  • 19. Maxwell K., Johnson G.N. 2000 – Chlorophyll fluorescence-a practical guide – J. Exp. Bot. 51: 659–668.
  • 20. Muller O., Hikosaka K., Hirose T. 2005 – Seasonal changes in light and temperature affect the balance between light harvesting and light utilisation components of photosynthesis in an evergreen understory shrub – Oecologia, 143: 501–508.
  • 21. Muraoka H., Tang Y., Koizumi H., Washitani I. 1997 – Combined effects of light and water availability on photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site – Oecologia, 112: 26–34.
  • 22. Niinemets Ü., Kull K. 2003 – Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubs and trees – Acta Oecol. 24: 209–219.
  • 23. Niinemets Ü., Kull O., Tenhunen J.D. 1998 – An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance – Tree Physiol. 18: 681–696.
  • 24. Oguchi R., Hikosaka K., Hirose T. 2003 - Does the photosynthetic light-acclimation need change in leaf anatomy? – Plant Cell Environ. 26: 505–512.
  • 25. Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Wagner H. 2011 – vegan: Community Ecology Package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan.
  • 26. Poorter H., Niinemets Ü., Poorter L., Wright I.J., Villar R. 2009 – Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis – New Phytol. 182: 565–588.
  • 27. R Development Core Team. 2011 – R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0, URL http://www.R-project.org/.
  • 28. Reich P.B., Ellsworth D.S., Walters M.B., Vose J.M., Gresham C., Volin J.C., Bowman W.D. 1999 – Generality of leaf trait relationships: a test across six biomes – Ecology, 80: 1955–1969.
  • 29. Reich P.B., Oleksyn J. 2004 – Global patterns of plant leaf N and P in relation to temperature and latitude – Proc. Natl. Acad. Sci. 101: 11001–11006.
  • 30. Santiago L.S. 2007 – Extending the leaf economics spectrum to decomposition: evidence from a tropical forest – Ecology, 88: 1126–1131.
  • 31. Schachtman D.P., Reid R.J., Ayling S.M. 1998 – Phosphorus uptake by plants: from soil to cell – Plant Physiol. 116: 447–453.
  • 32. Villar R., Merino J. 2001 – Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems – New Phytol. 151: 213–226.
  • 33. Warton D., Duursma R., Falster D., Taskinen S. 2011 – smatr: (Standardized) Major Axis Estimation and Testing Routines. R package version 3.2.4. http://CRAN.R-project.org/package=smatr.
  • 34. Warton D.I., Weber N.C. 2002 – Common slope tests for bivariate errors-in-variables models – Biometrical J. 44: 161–174.
  • 35. Warton D.I., Wright I.J., Falster D.S., Westoby M. 2006 – Bivariate line-fitting methods for allometry – Biol. Rev. 81: 259–291.
  • 36. Wright I.J., Reich P.B., Cornelissen J.H.C., Falster D.S., Garnier E., Hikosaka K., Lamont B.B., Lee W., Oleksyn J., Osada N., Poorter H., Villar R., Warton D.I., Westoby M. 2005 – Assessing the generality of global leaf trait relationships – New Phytol. 166: 485–496.
  • 37. Wright I.J., Reich P.B., Westoby M. 2001 - Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats – Funct. Ecol. 15: 423–434.
  • 38. Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M., Niinemets Ü., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V. I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R. 2004 – The worldwide leaf economics spectrum – Nature, 428: 821–827.
  • 39. Xu C.Y., Griffin K.L., Schuster W.S.F. 2007 – Leaf phenology and seasonal variation of photosynthesis of invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern United States deciduous forest – Oecologia, 154: 11–21.
  • 40. Xu F., Guo W.H., Wang R.Q., Xu W.H., Du N., Wang Y.F. 2009a – Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions – Acta Physiol. Plant. 31: 553–563.
  • 41. Xu F., Guo W.H., Xu W.H., Wei Y.H., Wang R.Q. 2009b – Leaf morphology correlates with water and light availability: What consequences for simple and compound leaves? – Prog. Nat. Sci. 19: 1789–1798.
  • 42. Zhang X.Q., Liu J., Welham C.V.J., Liu C.C., Li D.N., Chen L., Wang R.Q. 2006 – The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia) – Flora, 201: 547–554.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-54bc7812-f73e-4e27-82e5-9efe1c9af860
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.