PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical characteristics of ultra-shallow buried high-speed railway tunnel in broken surrounding rock during construction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical state of broken surrounding rock during the construction of ultra-shallow buried high-speed railway tunnel is very complicated, seriously affecting the construction safety. Taking Huying Xishan tunnel on Beijing-Shenyang Line as engineering background, MADIS/GTS NX numerical simulation and field test methods are used to analyze the characteristics of stress field, overall displacement, horizontal convergence of tunnel sidewalls and vault settlement during construction. The main mechanical characteristics of ultra-shallow buried high-speed railway tunnel with broken surrounding rock include: (1) After the stress redistribution, the stress concentration occurs at the boundary of the tunnel sidewall and surrounding rock, and the vertical displacement of tunnel vault and bottom appears obviously. (2) The horizontal displacement on both sides of the initial lining is obvious, while the horizontal displacement on the upper and lower support is small. The maximum lateral displacement of the initial lining is 1.71 cm, while the maximum vault settlement of the lower invert is 9.3 cm. (3) Both the horizontal convergence and the vault settlement increase with time. The growth rate is large in the early stage and tends to be stable in the later stage. (4) Compared with exponential and hyperbolic functions, the logarithmic function is most suitable for regression analysis of horizontal convergence and measured vault settlement data, and its fitting accuracy is higher than 90%.
Rocznik
Strony
645--659
Opis fizyczny
Bibliogr. 16 poz., il., tab.
Twórcy
autor
  • Henan Radio & Television University, Zhengzhou, China
autor
  • Central South University, Changsha, China
autor
  • Zhenhua Port Machinery Co. LTD, Shanghai, China
Bibliografia
  • [1] A.M. Skłodowska, M. Mitew-Czajewska, “The influence of electronic detonators on the quality of the tunnel excavation”, Archives of Civil Engineering, 2021, vol. 67, no. 3, pp. 333-349, DOI: 10.24425/ace.2021.138059.
  • [2] J.S. Zhang, Y.Z. Qi, “Research on the intelligent positioning method of tunnel excavation face”, Archives of Civil Engineering, 2022, vol. 68, no. 1, pp. 431-441, DOI: 10.24425/ace.2022.140178.
  • [3] W. Bogusz, T. Godlewski, A. Siemińska-Lewandowska, “Parameters used for prediction of settlement trough due to TBM tunnelling”, Archives of Civil Engineering, 2021, vol. 67, no. 4, pp. 351-367, DOI: 10.24425/ace.2021.138504.
  • [4] S. Suwansawat, H.H. Einstein, “Describing Settlement Troughs over Twin Tunnels Using a Superposition Technique”, Journal of Geotechnical & Geoenvironmental Engineering, 2007, vol. 133, no. 4, pp. 445-468, DOI: 10.1061/(ASCE)1090-0241(2007)133:4(445).
  • [5] D. Chapman, S. Ahn, D.V. Hunt, “Investigating ground movements caused by the construction of multiple tunnels in soft ground using laboratory model tests”, Canadian Geotechnical Journal, 2007, vol. 44, no. 6, pp. 631-643, DOI: 10.1139/t07-018.
  • [6] I. Kahoul, S. Yahyaoui, Y. Mehidi, Y. Khadri, “Shallow tunnel face stability analysis using finite elements”, Scientific Bulletin of National Mining University, 2021, no. 1, pp. 91-97, DOI: 10.33271/nvngu/2021-1/091.
  • [7] Code for Design of Railway Tunnel. TB10003-2016. China Railway Publishing House, 2019.
  • [8] O. Nývlt, S. Prívara, L. Ferkl, “Probabilistic risk assessment of highway tunnels”, Tunnelling and Underground Space Technology, 2011, vol. 26, no. 1, pp. 71-82, DOI: 10.1016/j.tust.2010.06.010.
  • [9] S. Dalgıç, “The influence of weak rocks on excavation and support of the Beykoz Tunnel, Turkey”, Engineering Geology, 2000, vol. 58, no. 2, pp. 137-148, DOI: 10.1016/S0013-7952(00)00054-5.
  • [10] F.-S. Jeng, M.-C. Weng, T.-H. Huang, M.-L. Lin, “Deformational characteristics of weak sandstone and impact to tunnel deformation”, Tunnelling and Underground Space Technology, 2002, vol. 17, no. 3, pp. 263-274, DOI: 10.1016/s0886-7798(02)00011-1.
  • [11] Z.Q. Chen, C. He, G.W. Xu, et al., “Supporting mechanism and mechanical behavior of a double primary support method for tunnels in broken phyllite under high geo-stress: a case study”, Bulletin of Engineering Geology and the Environment, 2019, vol. 78, pp. 5253-5267, DOI: 10.1007/s10064-019-01479-1.
  • [12] M. Hisatake, Y. Hieda, “Three-dimensional back-analysis method for the mechanical parameters of the new ground ahead of a tunnel face”, Tunnelling and Underground Space Technology, 2008, vol. 23, no. 4, pp. 373-380, DOI: 10.1016/j.tust.2007.06.006.
  • [13] A.S. Alagha, D.N. Chapman, “Numerical modelling of tunnel face stability in homogeneous and layered soft ground”, Tunnelling and Underground Space Technology, 2019, vol. 94, art. ID 103096, DOI: 10.1016/j.tust.2019.103096.
  • [14] Y. Shao, C. Yan, Q. Ma, “Analysis of the influence of fault fracture zone and dike on tunnel excavation”, Journal of China and Foreign Highway, 2015, vol. 35, no. 6, pp. 1-6, DOI: 10.14048/j.issn.1671-2579.2015.06.047.
  • [15] Y. Wu, W. Wang, Q. Xu, et al., “Model test and numerical simulation of vault collapse in soft tunnel surrounding rock”, Highway, 2018, vol. 63, no. 6, pp. 1-6.
  • [16] Q. Xu, P. Cheng, H. Zhu, et al., “Test and numerical simulation on stress disturbance characteristics of tunnel excavation in soft surrounding rock”, Modern Tunnelling Technology, 2016, no. 6, pp. 154-164, DOI: 10.13807/j.cnki.mtt.2016.06.021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50c08de1-b2f7-4bfe-b5e2-2913dd66acc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.