PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative hydrometallurgy for galvanic sludge sustainable recovery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The manuscript explores the feasibility of recovering zinc and iron from waste galvanic sludge generated during galvanic plating processes. Galvanic sludge, characterized by elevated concentrations of heavy metals, represents a suitable candidate for hydrometallurgical recycling. The primary objective of the experimental and practical phases was to extract zinc and iron through the leaching of galvanic sludge. Leaching procedures were conducted using sulfuric acid at varying temperatures and time durations, augmented by the introduction of oxidizing agents such as hydrogen peroxide or ozone. Subsequent separation of the leach and filtrate was achieved through filtration. The leachate underwent additional processing involving the precipitation of iron and other metals, employing diverse agents. Following further filtration, electrolysis was employed to attain pure zinc on the cathode, utilizing an electrical voltage of approximately 3 V. Comprehensive chemical analyses were conducted on all intermediate products, including the leachate, leach liquor, filtrate, solid precipitate, and the separated metal on the cathode. The outcomes of these analyses are meticulously presented in tables and graphs.
Słowa kluczowe
Wydawca
Rocznik
Strony
46--56
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • VŠB-Technical University of Ostrava, Czech Republic
  • VŠB-Technical University of Ostrava, Czech Republic
autor
  • LANEX a.s., Hlučínská 96, Bolatice, Czech Republic
  • VŠB-Technical University of Ostrava, Czech Republic
  • VŠB-Technical University of Ostrava, Czech Republic
Bibliografia
  • 1. Agacayak, T., Aras, A., Aydogan, S., Erdemoglu, M., 2014. Leaching of chalcopyrite concentrate in hydrogen peroxide solution, Physicochemical Problems in Mineral Processing, 50, 657-666, DOI: 10.5277/ppmp140219
  • 2. Borkowski, S., Ulewicz, R., Selejdak, J., Konstanciak, M., Klimecka-Tatar, D. 2012. The use of 3x3 matrix to evaluation of ribbed wire manufacturing technology, METAL 2012 - Conference Proceedings, 21st International Conference on Metallurgy and Materials, 1722-1728
  • 3. AHN, J., WU, J., LEE, J., (2019). Investigation on chalcopyrite leaching with methanesulfonic acid (MSA) and hydrogen peroxide. Hydrometallurgy, 187, 54-62, DOI: 10.1016/j.hydromet.2019. 05.001.
  • 4. Barakat, M., Mahmoud, M.H.H., Shehata, M.M., 2007. Hydrometallurgical recovery of zinc from fine blend of galvanization processes, Separation Science and Technology 41, 1757-1772, DOI: 10.1080/01496390600588747.
  • 5. Brožová, S., Lisinska, M., Saternus, M., Gajda, B., Martynková, G.S., Slíva, A., 2021. Hydrometallurgical recycling process for mobile phone, printed circuit boards using ozone, Metals, 11(5), 820, DOI: 10.3390/met11 050820.
  • 6. Brožová, S., Drápala, J., Kursa, M., Pustějovská, P., Jursová, S., (2016). Leaching refuse after sphalerite mineral for extraction zinc and cobalt, Metalurgija, 55(3), 497-499.
  • 7. Dvořák, P., Jandová, J., 2005. Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, 29-33, DOI: 10.1016/j.hydromet.2004.10.007
  • 8. Havlík, T., Oráč, D., Petraniková, M., Mišku-Fová, A., (2011). Hydrometallurgical treatment of used printed circuit boards after thermal treatment, Waste Managagement, 31(7), 1542-1546, DOI: 10.1016/j.wasman.2011.02.012.
  • 9. Grebski, M., Mazur, M., 2022. Social climate of support for innovativeness, Production Engineering Archives, 28(1), 110-116
  • 10. Gupta, Ch.K., 2004. Chemical metallurgy. Principles and practice, DOI: 10.1002/anie.200385071 (Access: 10.03.2022).
  • 11. Krištofová, D., 2001. Recyklace ušlechtilých kovů Ostrava: VŠB - Technická univerzita Ostrava, Czech Republic.
  • 12. Kuzior, A. 2022., Technological unemployment in the perspective of industry 4.0 development, Virtual Economics, 5(1), 7-23
  • 13. Kuzior, A., Zozul'ak, J. 2019. Adaptation of the Idea of Phronesis in Contemporary Approach to Innovation, Management Systems in Production Engineering, 27(2), 84-87
  • 14. Liquid waste, treatment in galvanizing and zinc electroplating. Industrial wastewater & air treatment. https://condorchem.com /en/blog/treatment-waste-electroplating-industryzinc- coatings/ (Access: 15.06.2022).
  • 15. Jackson, E., 1986. Hydrometallurgical extraction and reclamation. Ellis Horwood Limited, New York, USA. DOI: 10.1016/0304-386X(87)90057-0.
  • 16. Lisińska, M., Saternus M., Willner J., 2018. Research of leaching of the printed circuit boards coming from waste mobile phones, Archives of Metallurgy and Materials, 63(1), 143-147, DOI: 10.24425/118921.
  • 17. Dziuba, S.T., Ingaldi, M., 2018. Segragation and recycling of packaging waste by individual consumers in Poland. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 3(5), 545-552.
  • 18. Larina, I.V., Larin, A.N., Kiriliuk, O., Ingaldi, M., 2021. Green logistics - Modern transportation process technology, Production Engineering Archives, 27 (3), 184-190, DOI: 10.30657/pea.2021.27.24.
  • 19. Radzyminska-Lenarcik, E., Ulewicz, R., Ulewicz, M. 2018, Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4- methylimidazole, Desalination and Water Treatment, 102, 211-219.
  • 20. Radzyminska-Lenarcik E., Pyszka I., Ulewicz M., 2020, Separation of Zn(II), Cr(III), and Ni(II) ions using the polymer inclusion membranes containing acetylacetone derivative as the carrier, Membranes, 10(5):88, DOI: 10.3390/membranes10050088.
  • 21. Radzyminska-Lenarcik E., Ulewicz M,, 2019, Application of polymer inclusion membranes based on CTA with 1-alkylimidazoles on zinc(II) and manganese(II) ions separation from aqueous solutions, Polymers, 11(2), 242; DOI:10.3390/polym11020242.
  • 22. Radzyminska-Lenarcik E., Ulewicz M., Pyszka I., 2020a, Application of Polymer Inclusion Membranes Doped with Alkylimidazole to Separation of Silver and Zinc Ions from Model Solutions and after Battery Leaching, Materials, 13, 3103; DOI:10.3390/ma13143103
  • 23. Ulewicz M., Radzyminska-Lenarcik E., Application of Polymer and Supported Membranes with 1-Decyl-4-Methylimidazole for Pertraction of Transition Metal Ions, 2014, Separation Science and Technology, 49 (11), 1713-1721. DOI: 10.1080/01496395.2014.906453
  • 24. Ulewicz M, Radzyminska-Lenarcik E., Application of supported and polymer membrane with 1 decyl-2-methylimidazole for separation of transition metal ions, 2012, Physicochemical Problems of Mineral Processing, 48, 91-102.
  • 25. Škůrková, K.L., Ingaldi, M., 2014. Recycling process of the aluminium cans as an example of the renewable material sources, Advanced Materials Research, 1001, , 103-108, DOI: 10.4028/www.scientific.net/AMR.1001.103.
  • 26. Jagielska-Wiaderek, K., Klimecka-Tatar, D., 2023. Impact of the acidity of the medium on the corrosion resistance of the boronized surface layer - based on the cross-section of the boronized layer obtained on X6CrNiTi18-10 steel, Ochrona Przed Korozją, 66(10), 324-328, DOI: 10.15199/40.2023.10.2.
  • 27. Lipiński, T., Ulewicz, R., 2023. Degradation of R35 Steel in 5% NaCl environment at 10°C, Materials Research Proceedings, 2023, 34, 77-86, DOI: 10.21741/9781644902691-10.
  • 28. Krynke, M., Knop, K., Mazur, M., 2022. Maintenance management of large-size rolling bearings in heavy-duty machinery, Acta Montanistica Slovaca, 27(2), 327-341, DOI: 10.46544/AMS.v27i2.04.
  • 29. Mazur, M., 2018. Analysis of production incompatibilities and risk level in series production of assembly elements for the automotive industry, MATEC Web of Conferences, 183, 03011, DOI: 10.1051/matecconf/201818303011.
  • 30. Krynke, M., 2021. Personnel Management on the Production Line Using the FlexSim Simulation Environment, Manufacturing Technology, 21(5), 657-667, DOI: 10.21062/mft.2021.073.
  • 31. Muneer, R.M., Idzikowski, A., Al-Zubiedy, A., 2023. Electrical properties for cold sprayed Nano copper oxide thin films, Production Engineering Archives, 29(2), 225-230, DOI: 10.30657/pea.2023.29.26.
  • 32. Sokić, M., Marković, B., Stanković, S., Kamberović, Ž., Štrbac, N., Manojlović, V., Petronijević, N., 2019. Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid, Metals, 9(11), 1173, DOI: 10.3390/met9111173.
  • 33. Ulewicz, R., Mazur, M., Bokůvka, O. 2013. Structure and mechanical properties of finegrained steels, Periodica Polytechnica Transportation Engineering, 41(2), 111-115.
  • 34. Walichnowska, P., Idzikowski, A., 2023. Assessment and Analysis of the Environmental Impact of the Thermo-Shrinkable Packaging Process on the Way the Packaging Machine is Powered Based on LCA. Management Systems in Production, 31(3), 355- 360, DOI: 10.2478/mspe-2023-0039
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50ac3212-a5a0-4542-b908-5cbb8507c0c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.