PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal-organic frameworks for efficient drug adsorption and delivery

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, the number of materials used as drug delivery systems (DDS) has increased dramatically. The widespread use of DDSs has improved both the safety and efficacy of therapy. The systems currently in use pose numerous drawbacks and require proper improvements. Although many modern materials are being developed, metal-organic frameworks (MOFs) deserve special attention. Thermal and chemical stability, high specific surface area, low toxicity, high biocompatibility, and great potential for modification are the main features enabling MOFs to be used as DDS. In this review, we describe MOFs, their structure, synthesis, and characterization, as well as drug loading, drug release kinetics, and bioassays. A critical approach is to outline the disadvantages as well as the limitations of MOFs and to identify areas that need to be studied more thoroughly. Nonetheless, the prospective nature of MOFs as DDS and potential adsorbents in overdose or poisoning is presented and highlighted.
Czasopismo
Rocznik
Strony
115--189
Opis fizyczny
Bibliogr. 291 poz., il. kolor., rys.
Twórcy
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland
  • Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland
Bibliografia
  • [1] Trucillo, P.; Drug Carriers: Classification, Administration, Release Profiles, and Industrial Approach. Processes 2021, 9, 1-18. DOI: 10.3390/pr9030470
  • [2] Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K.; Drug Delivery Systems: An Updated Review. Int. J. Pharm. Investig. 2012, 2, 2-11. DOI: 10.4103/2230-973X.96920
  • [3] Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Samad, N.A.; Alitheen, N.B.; Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical Applications. International Journal of Nanomedicine 2020, 15, 2439-2483. DOI: 10.2147/IJN.S227805
  • [4] Lou, L.; Novel Drug Delivery Systems. Curr. Rev. Pain. 1999, 3, 411-416. DOI: 10.1007/s11916-999-0084-z
  • [5] Gao, H.; Jiang, X.; [The progress of novel drug delivery systems]. Yao Xue Xue Bao 2017, 52, 181-188.
  • [6] Loftsson, T.; Brewster, M.E.; Drug Solubilization and Stabilization by Cyclodextrin Drug Carriers, in.: Drug Delivery Strategies for Poorly Water-Soluble Drugs, (Ed.: Douroumis D.; Fahr, A.) 2013, 67-101, Wiley. DOI: 10.1002/9781118444726.ch3
  • [7] Bhosale, M.; Borkar, P.; Routes of Drug Administration, in.: Textbook of pharmacology, (Ed.: Bhandari P.R.) 2020, 6-9, Thieme. ISBN: 9789390553150
  • [8] Homayun, B.; Lin, X.; Choi, H.J.; Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. DOI: 10.3390/pharmaceutics11030129
  • [9] Talevi, A.; Quiroga, P.A.M.; ADME Processes in Pharmaceutical Sciences: Dosage, Design, and Pharmacotherapy Success. 2018, Springer. ISBN: 9783319995939.
  • [10] Anantrao, J.H.; Nath, P.A.; Nivrutti, P.R.; Drug Penetration Enhancement Techniques in Transdermal Drug Delivery System: A Review. J. Pharm. Res. Int. 2021, 33, 46-61. DOI: 10.9734/jpri/2021/v33i19b31337
  • [11] Kaur, G.; Arora, M.; Ravi Kumar, M.N.; V Oral Drug Delivery Technologies-A Decade of Developments. J. Pharmacol. Exp. Ther. 2019, 370, 529-543. DOI: 10.1124/jpet.118.255828
  • [12] Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent Advances in Carrier Mediated Nose-to-Brain Delivery of Pharmaceutics. Eur. J. Pharm. Biopharm. 2018, 128, 337-362. DOI: 10.1016/j.ejpb.2018.05.009
  • [13] Yang, W.; Veroniaina, H.; Qi, X.; Chen, P.; Li, F.; Ke, P.C.; Soft and Condensed Nanoparticles and Nanoformulations for Cancer Drug Delivery and Repurpose. Adv. Ther. 2020, 3, 1900102. DOI: 10.1002/adtp.201900102
  • [14] Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S.; Evaluation of Intranasal Delivery Route of Drug Administration for Brain Targeting. Brain Res. Bull. 2018, 143, 155-170. DOI: 10.1016/j.brainresbull.2018.10.009
  • [15] Ulusoy, S.; Bayar Muluk, N.; Karpischenko, S.; Passali, G.C.; Negm, H.; Passali, D.; Milkov, M.; Kopacheva-Barsova, G.; Konstantinidis, I.; Dilber, M.; et al. Mechanisms and Solutions for Nasal Drug Delivery - a Narrative Review. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 72-81. DOI: 10.26355/eurrev_202212_30487
  • [16] Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J.; et al. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021, 13. DOI: 10.3390/pharmaceutics13060884
  • [17] Major, I.; McConville, C.; Vaginal Drug Delivery for the Localised Treatment of Cervical Cancer. Drug Deliv. Transl. Res. 2017, 7, 817-828. DOI: 10.1007/s13346-017-0395-2
  • [18] Rathi, R.; Sanshita; Kumar, A.; Vishvakarma, V.; Huanbutta, K.; Singh, I.; Sangnim, T.; Advancements in Rectal Drug Delivery Systems: Clinical Trials, and Patents Perspective. Pharmaceutics 2022, 14, 2210. DOI: 10.3390/pharmaceutics14102210
  • [19] Shukla, T.; Upmanyu, N.; Agrawal, M.; Saraf, S.; Saraf, S.; Alexander, A.; Biomedical Applications of Microemulsion through Dermal and Transdermal Route. Biomed. Pharmacother. 2018, 108, 1477-1494. DOI: 10.1016/j.biopha.2018.10.021
  • [20] Ching, L.; Gupta, M.; Transdermal Drug Delivery Systems in Diabetes Management : A Review. Asian J. Pharm. Sci. 2020, 15, 13-25. DOI: 10.1016/j.ajps.2019.04.006
  • [21] Qindeel, M.; Hameed, M.; Ahmed, N.; Recent Trends, Challenges and Future Outlook of Transdermal Drug Delivery Systems for Rheumatoid Arthritis Therapy. J. Control. Release 2020, 327, 595-615. DOI: 10.1016/j.jconrel.2020.09.016
  • [22] Waghule, T.; Singhvi, G.; Kumar, S.; Monohar, M.; Microneedles : A Smart Approach and Increasing Potential for Transdermal Drug Delivery System. Biomed. Pharmacother. 2019, 109, 1249-1258. DOI: 10.1016/j.biopha.2018.10.078
  • [23] Nayak, K.; Misra, M.; A Review on Recent Drug Delivery Systems for Posterior Segment of Eye. Biomed. Pharmacother. 2018, 107, 1564-1582. DOI: 10.1016/j.biopha.2018.08.138
  • [24] Patra, J.K.; Das, G.; Fraceto, L.F.; Vangelie, E.; Campos, R.; Rodriguez, P.; Susana, L.; Torres, A.; Armando, L.; Torres, D.; et al. Nano Based Drug Delivery Systems : Recent Developments and Future Prospects. J. Nanobiotechnology 2018, 16, 71. DOI: 10.1186/s12951-018-0392-8
  • [25] Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Recent Progress in Drug Delivery. Acta Pharm. Sin. B 2019, 9, 1145-1162. DOI: 10.1016/j.apsb.2019.08.003
  • [26] Del Valle, E.M.M.; Galán, M.A.; Carbonell, R.G.; Drug Delivery Technologies: The Way Forward in the New Decade. Ind. Eng. Chem. Res. 2009, 48, 2475-2486, DOI: 10.1021/ie800886m
  • [27] Yasmin, F.; Najeeb, H.; Shaikh, S.; Hasanain, M.; Naeem, U.; Moeed, A.; Koritala, T.; Hasan, S.; Surani, S.; Novel Drug Delivery Systems for Inflammatory Bowel Disease. World J. Gastroenterol. 2022, 28, 1922-1933. DOI: 10.3748/wjg.v28.i18.1922
  • [28] Adepu, S.; Ramakrishna, S.; Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. DOI: 10.3390/molecules26195905.
  • [29] Hutton, A.R.J.; Quinn, H.L.; McCague, P.J.; Jarrahian, C.; Rein-weston, A.; Co, P.S.; Gerth-guyette, E.; Zehrung, D.; Larrañeta, E.; Donnelly, R.F.; Transdermal Delivery of Vitamin K Using Dissolving Microneedles for the Prevention of Vitamin K Deficiency Bleeding. 2018, 541, 56-63. DOI: 10.1016/j.ijpharm.2018.02.031
  • [30] Bora, P.; Kumar, L.; Bansal, A.K.; Microneedle Technology for Advanced Drug Delivery : Evolving Vistas. Crips 2008, 9, 7-10.
  • [31] Zhu, M.; Liu, Y.; Jiang, F.; Cao, J.; Kundu, S.C.; Lu, S.; Combined Silk Fibroin Microneedles for Insulin Delivery. ACS Biomater. Sci. Eng. 2020, 6, 3422-3429. DOI: 10.1021/acsbiomaterials.0c00273
  • [32] Bhatnagar, S.; Kumari, P.; Pattarabhiran, S.P.; Venuganti, V.V.K.; Zein Microneedles for Localized Delivery of Chemotherapeutic Agents to Treat Breast Cancer: Drug Loading, Release Behavior, and Skin Permeation Studies. AAPS PharmSciTech 2018, 19, 1818-1826. DOI: 10.1208/s12249-018-1004-5
  • [33]Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R.; Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Adv. Cancer Res. 2018, 137, 115-170. DOI: 10.1016/bs.acr.2017.11.003
  • [34] Jacob, S.; Nair, A.B.; Shah, J.; Emerging Role of Nanosuspensions in Drug Delivery Systems. Biomater. Res. 2020, 24, 3. DOI: 10.1186/s40824-020-0184-8
  • [35] Bose, A.; Roy Burman, D.; Sikdar, B.; Patra, P.; Nanomicelles: Types, Properties and Applications in Drug Delivery. IET nanobiotechnology 2021, 15, 19-27. DOI: 10.1049/nbt2.12018
  • [36] Wang, X.; Wang, S.; Zhang, Y.; Advance of the Application of Nano-Controlled Release System in Ophthalmic Drug Delivery. Drug Deliv. 2016, 23, 2897-2901. DOI: 10.3109/10717544.2015.1116025
  • [37] Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O.; Altamimi, A.S.A.; Najib Ullah, S.N.M.; Ojha, A.; Karim, S.; Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022, 8, DOI: 10.3390/gels8020082
  • [38] Tawfik, M.; Chen, F.; Goldberg, J.L.; Sabel, B.A.; Nanomedicine and Drug Delivery to the Retina: Current Status and Implications for Gene Therapy. Naunyn-Schmiedeberg's Arch Pharmacol 2022, 395, 1477-1507. DOI: 10.1007/s00210-022-02287-3
  • [39] Qamar, Z.; Qizilbash, F.F.; Iqubal, M.K.; Ali, A.; Narang, J.K.; Ali, J.; Baboota, S.; Nano-Based Drug Delivery System: Recent Strategies for the Treatment of Ocular Disease and Future Perspective. Recent Pat. Drug Deliv. Formul. 2019, 13, 246-254. DOI: 10.2174/1872211314666191224115211
  • [40] Pérez-Herrero, E.; Fernández-Medarde, A.; Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft fur Pharm. Verfahrenstechnik e.V 2015, 93, 52-79. DOI: 10.1016/j.ejpb.2015.03.018
  • [41] Gisbert-Garzarán, M.; Lozano, D.; Vallet-Regí, M.; Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles. Int. J. Mol. Sci. 2020, 21, 9696. DOI: 10.3390/ijms21249696.
  • [42] Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L.; Quantum Dots in Imaging, Drug Delivery and Sensor Applications. Int. J. Nanomedicine 2017, 12, 5421-5431. DOI: 10.2147/IJN.S138624
  • [43] Banerjee, A.; Mitragotri, S.; Intestinal Patch Systems for Oral Drug Delivery. Curr. Opin. Pharmacol. 2017, 36, 58-65. DOI: 10.1016/j.coph.2017.08.005
  • [44] Chen, Z.; Wan, L.; Yuan, Y.; Kuang, Y.; Xu, X.; Liao, T.; Liu, J.; Xu, Z.Q.; Jiang, B.; Li, C.; PH/GSH-Dual-Sensitive Hollow Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Cancer Therapy. ACS Biomater. Sci. Eng. 2020, 6, 3375-3387. DOI: 10.1021/acsbiomaterials.0c00073
  • [45] Courtenay, A.J.; Mcalister, E.; Mccrudden, M.T.C.; Vora, L.; Steiner, L.; Levin, G.; Levy-nissenbaum, E.; Shterman, N.; Kearney, M.; Mccarthy, H.O.; et al. Hydrogel-Forming Microneedle Arrays as a Therapeutic Option for Transdermal Esketamine Delivery. J. Control. Release 2020, 322, 177-186. DOI: 10.1016/j.jconrel.2020.03.026
  • [46]Morgan, J.R.; Wang, J.; Barocas, J.A.; Jaeger, J.L.; Durham, N.N.; Babakhanlou-Chase, H.; Bharel, M.; Walley, A.Y.; Linas, B.P.; Opioid Overdose and Inpatient Care for Substance Use Disorder Care in Massachusetts. J. Subst. Abuse Treat. 2020, 112, 42-48. DOI: 10.1016/j.jsat.2020.01.017
  • [47] Zellner, T.; Prasa, D.; Färber, E.; Hoffmann-Walbeck, P.; Genser, D.; Eyer, F.; The Use of Activated Charcoal to Treat Intoxications. Dtsch. Arztebl. Int. 2019, 116, 311-317. DOI: 10.3238/arztebl.2019.0311
  • [48] Müller, D.; Desel, H.; Common Causes of Poisoning: Etiology, Diagnosis and Treatment. Dtsch. Arztebl. Int. 2013, 110, 690-700. DOI: 10.3238/arztebl.2013.0690
  • [49] Hassen, J.H.; Abdulkadir, H.K.; Recent Developments in the Use of Activated Charcoal in Medicine. J. Med. Sci. 2022, 91, e647. DOI: 10.20883/medical.e647
  • [50] Song, Y.; Manian, M.; Fowler, W.; Korey, A.; Kumar Banga, A.; Activated Carbon-Based System for the Disposal of Psychoactive Medications. Pharmaceutics 2016, 8, 31. DOI: 10.3390/pharmaceutics8040031
  • [51] Graudins, A.; Lee, H.M.; Druda, D.; Calcium Channel Antagonist and Beta-Blocker Overdose: Antidotes and Adjunct Therapies. Br. J. Clin. Pharmacol. 2016, 81, 453-461. DOI: 10.1111/bcp.12763
  • [52] Chiew, A.L.; Gluud, C.; Brok, J.; Buckley, N.A.; Interventions for Paracetamol (Acetaminophen) Overdose. Cochrane database Syst. Rev. 2018, 2, CD003328. DOI: 10.1002/14651858.CD003328.pub3
  • [53] An, H.; Godwin, J.; Flumazenil in Benzodiazepine Overdose. C. Can. Med. Assoc. J. = J. l’Association medicale Can. 2016, 188, E537. DOI: 10.1503/cmaj.160357
  • [54] Hood, S.D.; Norman, A.; Hince, D.A.; Melichar, J.K.; Hulse, G.K.; Benzodiazepine Dependence and Its Treatment with Low Dose Flumazenil. Br. J. Clin. Pharmacol. 2014, 77, 285-294 DOI: 10.1111/bcp.12023.
  • [55] Madhuri, P.; Mukherjee, A.; Manna, S.; Dhar, M.; Amitraz Poisoning: Early Gastric Lavage Can Prevent Life-Threatening Complications. J. Fam. Med. Prim. care 2020, 9, 2129-2131. DOI: 10.4103/jfmpc.jfmpc_1268_19
  • [56] Zavaliy, L.B.; Petrikov, S.S.; Simonova, A.Y.; Potskhveriya, M.M.; Zaker, F.; Ostapenko, Y.N.; Ilyashenko, K.K.; Dikaya, T.I.; Shakhova, O.B.; Evseev, A.K.; et al. Diagnosis and Treatment of Persons with Acute Thallium Poisoning. Toxicol. reports 2021, 8, 277-281. DOI: 10.1016/j.toxrep.2021.01.013
  • [57] Orellana-tavra, C.; Ko, M.; Li, A.; Stock, N.; Fairen-jimenez, D.; Biocompatible, Crystalline, and Amorphous Bismuth-Based Metal − Organic Frameworks for Drug Delivery. ACS Appl. Mater. Interfaces 2020, 12, 5633-5641. DOI: 10.1021/acsami.9b21692
  • [58] Chedid, G.; Yassin, A.; Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications. Nanomaterials 2018, 8, 1-27. DOI: 10.3390/nano8110916
  • [59] Saeb, M.R.; Rabiee, N.; Mozafari, M.; Mostafavi, E.; Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials 2021, 14, 3652. DOI: 10.3390/ma14133652
  • [60] He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharmaceutica Sinica B 2021, 11, 2362-2395. DOI: 10.1016/j.apsb.2021.03.019
  • [61] Lawson, H.D.; Walton, S.P.; Chan, C.; Metal-Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004-7020. DOI: 10.1021/acsami.1c01089
  • [62] Osterrieth, J.W.M.; Fairen-Jimenez, D.; Metal-Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol. J. 2021, 16, 2000005. DOI: 10.1002/biot.202000005
  • [63] Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G.; Metal - Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery. Advanced Science 2019, 6, 1801526, DOI: 10.1002/advs.201801526
  • [64] Strauss, I.; Chakarova, K.; Mundstock, A.; Mihaylov, M.; Hadjiivanov, K.; Guschanski, N.; Caro, J.; UiO-66 and UiO-66-NH 2 Based Sensors : Dielectric and FTIR Investigations on the Effect of CO2 Adsorption. Microporous Mesoporous Mater. 2020, 302, 110227. DOI: 10.1016/j.micromeso.2020.110227
  • [65] Imanipoor, J.; Mohammadi, M.; Dinari, M.; Ehsani, M.R.; Adsorption and Desorption of Amoxicillin Antibiotic from Water Matrices Using an Effective and Recyclable MIL-53(Al) Metal-Organic Framework Adsorbent. J. Chem. Eng. Data 2021, 66, 389-403. DOI: 10.1021/acs.jced.0c00736
  • [66] Jonckheere, D.; Steele, J.A.; Claes, B.; Bueken, B.; Claes, L.; Lagrain, B.; Roeffaers, M.B.J.; De Vos, D.E.; Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9, 30064-30073. DOI: 10.1021/acsami.7b09175
  • [67] Taghvimi, A.; Tabrizi, A.B.; Dastmalchi, S.; Javadzadeh, Y.; Metal Organic Framework Based Carbon Porous as an Efficient Dispersive Solid Phase Extraction Adsorbent for Analysis of Methamphetamine from Urine Matrix. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1109, 149-154. DOI: 10.1016/j.jchromb.2019.02.005
  • [68] Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B.; A Review on Contemporary Metal-Organic Framework Materials. Inorganica Chim. Acta 2016, 446, 61-74. DOI: 10.1016/j.ica.2016.02.062
  • [69] Hoskins, B.F.; Robson, R.; Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments. J. Am. Chem. Soc. 1989, 111, 5962-5964. DOI: 10.1021/ja00197a079
  • [70] Hoskins, B.F.; Robson, R.; Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments. J. Am. Chem. Soc. 1989, 111, 5962-5964. DOI: 10.1021/ja00197a079
  • [71] Jones, C.W. Metal-Organic Frameworks and Covalent Organic Frameworks: Emerging Advances and Applications. J. Am. Chem. Soc. 2022, 2, 1504-1505. DOI: 10.1021/jacsau.2c00376
  • [72] Gao, H.; Shen, H.; Wu, H.; Jing, H.; Sun, Y.; Liu, B.; Chen, Z.; Song, J.; Lu, L.; Wu, Z.; et al. Review of Pristine Metal-Organic Frameworks for Supercapacitors: Recent Progress and Perspectives. Energy and Fuels 2021, 35, 12884-12901. DOI: 10.1021/acs.energyfuels.1c01722
  • [73] Rojas, S.; Arenas-Vivo, A.; Horcajada, P.; Metal-Organic Frameworks: A Novel Platform for Combined Advanced Therapies. Coord. Chem. Rev. 2019, 388, 202-226. DOI: 10.1016/j.ccr.2019.02.032.
  • [74] Gao, X.; Zhai, M.; Guan, W.; Liu, J.; Liu, Z.; Damirin, A.; Controllable Synthesis of a Smart Multifunctional Nanoscale Metal-Organic Framework for Magnetic Resonance/Optical Imaging and Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 3455-3462, DOI: 10.1021/acsami.6b14795
  • [75]Zhao, J.; Yin, F.; Ji, L.; Wang, C.; Shi, C.; Liu, X.; Yang, H.; Wang, X.; Kong, L.; Development of a Tau-Targeted Drug Delivery System Using a Multifunctional Nanoscale Metal-Organic Framework for Alzheimer’s Disease Therapy. ACS Appl. Mater. Interfaces 2020, 12, 44447-44458. DOI: 10.1021/acsami.0c11064
  • [76] Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J.; Reticular Synthesis and the Design of New Materials. Nature 2003, 423, 705-714. DOI: 10.1038/nature01650
  • [77] Haldar, R.; Maji, T.K.; Metal-Organic Frameworks (MOFs) Based on Mixed Linker Systems: Structural Diversities towards Functional Materials. CrystEngComm 2013, 15, 9276-9295. DOI: 10.1039/c3ce41438h
  • [78] Perera, I.R.; Hettiarachchi, C. V; Ranatunga, U.; 7. Metal - Organic Frameworks in Dye-Sensitized Solar Cells, in.: Advances in Solar Energy Research, (Ed.:Tyagi, H; Agarwal, A.K.; Chakraborty, P.R.; Powar, S.) 2019, Springer Singapore. ISBN 9789811333026
  • [79] Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C.; Metal-Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232-1268. DOI: 10.1021/cr200256v
  • [80] Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y.; Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery. Biomaterials 2020, 230, 119619. DOI: 10.1016/j.biomaterials.2019.119619
  • [81] Gorban, I.E.; Soldatov, M.A.; Butova, V. V; Medvedev, P. V; Burachevskaya, O.A.; Belanova, A.; Zolotukhin, P.; Soldatov, A. V.; L -Leucine Loading and Release in MIL-100 Nanoparticles. Int. J. Mol. Sci. 2020, 21, 9758. DOI: 10.3390/ijms21249758
  • [82] Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M.H.; Jakobsen, S.; Lillerud, K.P.; Lamberti, C.; Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23, 1700-1718. DOI: 10.1021/cm1022882
  • [83] Abazari, R.; Reza Mahjoub, A.; Slawin, A.M.Z.; Carpenter-Warren, C.L.; Morphology- and Size-Controlled Synthesis of a Metal-Organic Framework under Ultrasound Irradiation: An Efficient Carrier for PH Responsive Release of Anti-Cancer Drugs and Their Applicability for Adsorption of Amoxicillin from Aqueous Solution. Ultrason. Sonochem. 2018, 42, 594-608. DOI: 10.1016/j.ultsonch.2017.12.032
  • [84] Wang, T.C.; Vermeulen, N.A.; Kim, I.S.; Martinson, A.B.F.; Stoddart, J.F.; Hupp, J.T.; Farha, O.K.; Scalable Synthesis and Post-Modification of a Mesoporous Metal-Organic Framework Called NU-1000. Nat. Protoc. 2015, 11, 149-162, DOI :10.1038/nprot.2016.001
  • [85] Proenza, Y.G.; Longo, R.L.; Simulation of the Adsorption and Release of Large Drugs by ZIF-8. J. Chem. Inf. Model. 2020, 60, 644-652. DOI: 10.1021/acs.jcim.9b00893
  • [86] Kim, K.; Lee, S.; Jin, E.; Palanikumar, L.; Lee, J.H.; Kim, J.C.; Nam, J.S.; Jana, B.; Kwon, T.H.; Kwak, S.K.; et al. MOF × Biopolymer: Collaborative Combination of Metal-Organic Framework and Biopolymer for Advanced Anticancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 27512-27520. DOI: 10.1021/acsami.9b05736
  • [87] Liu, M.; Zu, L.; Hudson, Z.M.; Mechanistic Principles for Engineering Hierarchical Porous Metal-Organic Frameworks. ACS Nano 2022, 16, 13573-13594. DOI: 10.1021/acsnano.2c06587.
  • [88] Sun, Y.; Zheng, L.; Yang, Y.; Qian, X.; Fu, T.; Li, X.; Yang, Z.; Yan, H.; Cui, C.; Tan, W.; Metal-Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Lett. 2020, 12, 1-29. DOI: 10.1007/s40820-020-00423-3
  • [89] Nalaparaju, A.; Jiang, J. Metal−Organic Frameworks for Liquid Phase Applications. Adv. Sci. 2021, 8, 2003143. DOI: 10.1002/advs.202003143
  • [90] Chattopadhyay, K.; Mandal, M.; Maiti, D.K.; Smart Metal-Organic Frameworks for Biotechnological Applications: A Mini-Review. ACS Appl. Bio Mater. 2021, 4, 8159-8171. DOI: 10.1021/acsabm.1c00982
  • [91] Baheri, T.; Yamini, Y.; Shamsayei, M.; Tabibpour, M.; Application of HKUST-1 Metal-Organic Framework as Coating for Headspace Solid-Phase Microextraction of Some Addictive Drugs. J. Sep. Sci. 2021, 44, 2814-2823. DOI: 10.1002/jssc.202100070
  • [92]Wang, Z.; Liu, L.; Li, Z.; Goyal, N.; Du, T.; He, J.; Li, G.K.; Shaping of Metal-Organic Frameworks: A Review. Energy and Fuels 2022, 36, 2927-2944. DOI: 10.1021/acs.energyfuels.1c03426
  • [93] Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J.T.; Farha, O.K.; Yildirim, T.; Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges. J. Am. Chem. Soc. 2013, 135, 11887-11894. DOI: 10.1021/ja4045289
  • [94]Pirzadeh, K.; Esfandiari, K.; Ghoreyshi, A.A.; Rahimnejad, M.; CO2 and N2 Adsorption and Separation Using Aminated UiO-66 and Cu3(BTC)2 : A Comparative Study. Korean Journal of Chemical Engineering 2020, 37, 513-524. DOI: 10.1007/s11814-019-0433-5
  • [95] Islamoglu, T.; Chen, Z.; Wasson, M.C.; Buru, C.T.; Kirlikovali, K.O.; Afrin, U.; Mian, M.R.; Farha, O.K.; Metal-Organic Frameworks against Toxic Chemicals. Chem. Rev. 2020, 120, 8130-8160. DOI: 10.1021/acs.chemrev.9b00828
  • [96] Liu, X.; Liang, T.; Zhang, R.; Ding, Q.; Wu, S.; Li, C.; Lin, Y.; Ye, Y.; Zhong, Z.; Zhou, M.; Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces 2021, 13, 9643-9655. DOI: 10.1021/acsami.0c21486
  • [97] Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P.; A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850-13851. DOI: 10.1021/ja8057953
  • [98] Wu, G.; Ma, J.; Li, S.; Guan, J.; Jiang, B.; Wang, L.; Li, J.; Wang, X.; Chen, L.; Magnetic Copper-Based Metal Organic Framework as an Effective and Recyclable Adsorbent for Removal of Two Fluoroquinolone Antibiotics from Aqueous Solutions. J. Colloid Interface Sci. 2018, 528, 360-371. DOI: 10.1016/j.jcis.2018.05.105
  • [99] Zhou, J.; Tian, G.; Zeng, L.; Song, X.; Bian, X.W.; Nanoscaled Metal-Organic Frameworks for Biosensing, Imaging, and Cancer Therapy. Adv. Healthc. Mater. 2018, 7, 1800022. DOI: 10.1002/adhm.201800022
  • [100] Akhter, S.; Mohd Zain, N.K.; Shalauddin, M.; Singh, V.K.; Misnon, I.I.; Sharma, R.K.; Das, S.; Basirun, W.J.; Johan, M.R.; Jose, R.; Tri-Metallic Co-Ni-Cu Based Metal Organic Framework Nanostructures for the Detection of an Anticancer Drug Nilutamide. Sensors Actuators, A Phys. 2021, 325, 112711. DOI: 10.1016/j.sna.2021.112711.
  • [101] Dong, H.; Yang, G.X.; Zhang, X.; Meng, X. Bin; Sheng, J.L.; Sun, X.J.; Feng, Y.J.; Zhang, F.M.; Folic Acid Functionalized Zirconium-Based Metal-Organic Frameworks as Drug Carriers for Active Tumor-Targeted Drug Delivery. Chem. - A Eur. J. 2018, 24, 17148-17154. DOI: 10.1002/chem.201804153
  • [102] Abazari, R.; Ataei, F.; Morsali, A.; Slawin, A.M.Z.; Carpenter-Warren, C.L.; A Luminescent Amine-Functionalized Metal-Organic Framework Conjugated with Folic Acid as a Targeted Biocompatible PH-Responsive Nanocarrier for Apoptosis Induction in Breast Cancer Cells. ACS Appl. Mater. Interfaces 2019, 11, 45442-45454. DOI: 10.1021/acsami.9b16473
  • [103] Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Darroudi, M.; Avan, A.; Hassanian, S.M.; Landarani, M.; Khazaei, M.; Delivery of Oxaliplatin to Colorectal Cancer Cells by Folate-Targeted UiO-66-NH2. Toxicol. Appl. Pharmacol. 2021, 423, 115573. DOI: 10.1016/j.taap.2021.115573
  • [104]Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Orellana-Tavra, C.; Del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S.; Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 5255-5268. DOI: 10.1021/acsami.7b17756
  • [105] Fytory, M.; Arafa, K.K.; El Rouby, W.M.A.; Farghali, A.A.; Abdel-Hafiez, M.; El-Sherbiny, I.M.; Dual-Ligated Metal Organic Framework as Novel Multifunctional Nanovehicle for Targeted Drug Delivery for Hepatic Cancer Treatment. Sci. Rep. 2021, 11, 19808. DOI: 10.1038/s41598-021-99407-5
  • [106] Ji, P.; Wang, L.; Wang, S.; Zhang, Y.; Qi, X.; Tao, J.; Wu, Z.; Hyaluronic Acid-Coated Metal-Organic Frameworks Benefit the ROS-Mediated Apoptosis and Amplified Anticancer Activity of Artesunate. J. Drug Target. 2020, 28, 1096-1109. DOI: 10.1080/1061186X.2020.1781136
  • [107] Rojas, S.; Horcajada, P.; Metal − Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem. Rev. 2020, 120, 8378-8415. DOI: 10.1021/acs.chemrev.9b00797
  • [108] Chowdhuri, A.R.; Singh, T.; Ghosh, S.K.; Sahu, S.K. Carbon Dots Embedded Magnetic Nanoparticles @Chitosan @Metal Organic Framework as a Nanoprobe for PH Sensitive Targeted Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2016, 8, 16573-16583. DOI: 10.1021/acsami.6b03988
  • [109] Abánades Lázaro, I.; Haddad, S.; Rodrigo-Muñoz, J.M.; Marshall, R.J.; Sastre, B.; Del Pozo, V.; Fairen-Jimenez, D.; Forgan, R.S.; Surface-Functionalization of Zr-Fumarate MOF for Selective Cytotoxicity and Immune System Compatibility in Nanoscale Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 31146-31157. DOI: 10.1021/acsami.8b11652.
  • [110] Chen, D.; Yang, D.; Dougherty, C.A.; Lu, W.; Wu, H.; He, X.; Cai, T.; Van Dort, M.E.; Ross, B.D.; Hong, H.; In Vivo Targeting and Positron Emission Tomography Imaging of Tumor with Intrinsically Radioactive Metal-Organic Frameworks Nanomaterials. ACS Nano 2017, 11, 4315-4327. DOI: 10.1021/acsnano.7b01530
  • [111] Liang, Z.; Yang, Z.; Yuan, H.; Wang, C.; Qi, J.; Liu, K.; Cao, R.; Zheng, H.; A Protein@metal-Organic Framework Nanocomposite for PH-Triggered Anticancer Drug Delivery. Dalt. Trans. 2018, 47, 10223-10228. DOI: 10.1039/c8dt01789a
  • [112] Ren, S.Z.; Zhu, D.; Zhu, X.H.; Wang, B.; Yang, Y.S.; Sun, W.X.; Wang, X.M.; Lv, P.C.; Wang, Z.C.; Zhu, H.L.; Nanoscale Metal-Organic-Frameworks Coated by Biodegradable Organosilica for PH and Redox Dual Responsive Drug Release and High-Performance Anticancer Therapy. ACS Appl. Mater. Interfaces 2019, 11, 20678-20688. DOI: 10.1021/acsami.9b04236.
  • [113] Hu, Z.; Qiao, C.; Xia, Z.; Li, F.; Han, J.; Wei, Q.; Yang, Q.; Xie, G.; Chen, S.; Gao, S.; A Luminescent Mg-Metal-Organic Framework for Sustained Release of 5-Fluorouracil: Appropriate Host-Guest Interaction and Satisfied Acid-Base Resistance. ACS Appl. Mater. Interfaces 2020, 12, 14914-14923. DOI: 10.1021/acsami.0c01198
  • [114] Liu, W.; Zhong, Y.; Wang, X.; Zhuang, C.; Chen, J.; Liu, D.; Xiao, W.; Pan, Y.; Huang, J.; Liu, J.; A Porous Cu(II)-Based Metal-Organic Framework Carrier for PH-Controlled Anticancer Drug Delivery. Inorg. Chem. Commun. 2020, 111, 107675. DOI: 10.1016/j.inoche.2019.107675
  • [115] Zhao, H.; Zhao, Y.; Liu, D.; pH and H2S Dual-Responsive Magnetic Metal-Organic Frameworks for Controlling the Release of 5-Fluorouracil. ACS Appl. Bio Mater. 2021, 4, 7103-7110. DOI: 10.1021/acsabm.1c00710
  • [116] Yang, J.C.; Chen, Y.; Li, Y.H.; Yin, X.B.; Magnetic Resonance Imaging-Guided Multi-Drug Chemotherapy and Photothermal Synergistic Therapy with PH and NIR-Stimulation Release. ACS Appl. Mater. Interfaces 2017, 9, 22278-22288. DOI: 10.1021/acsami.7b06105
  • [117]Gao, X.; Zhai, M.; Guan, W.; Liu, J.; Liu, Z.; Controllable Synthesis of a Smart Multifunctional Nanoscale Metal − Organic Framework for Magnetic Resonance / Optical Imaging and Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 3455-3462. DOI: 10.1021/acsami.6b14795
  • [118] Cui, R.; Zhao, P.; Yan, Y.; Bao, G.; Damirin, A.; Liu, Z.; Outstanding Drug-Loading/Release Capacity of Hollow Fe-Metal-Organic Framework-Based Microcapsules: A Potential Multifunctional Drug-Delivery Platform. Inorg. Chem. 2021, 60, 1664-1671. DOI: 10.1021/acs.inorgchem.0c03156
  • [119] Xue, Y.; Zheng, S.; Xue, H.; Pang, H.; Metal-Organic Framework Composites and Their Electrochemical Applications. J. Mater. Chem. A 2019, 7, 7301-7327. DOI: 10.1039/C8TA12178H
  • [120] Mallakpour, S.; Nikkhoo, E.; Hussain, C.M.; Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment. Coord. Chem. Rev. 2022, 451, 214262. DOI: 10.1016/j.ccr.2021.214262
  • [121] Duan, W.; Qiao, S.; Zhuo, M.; Sun, J.; Guo, M.; Xu, F.; Liu, J.; Wang, T.; Guo, X.; Zhang, Y.; et al. Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment. Chem 2021, 7, 450-462. DOI: 10.1016/j.chempr.2020.11.018
  • [122] Sohrabi, H.; Javanbakht, S.; Oroojalian, F.; Rouhani, F.; Shaabani, A.; Majidi, M.R.; Hashemzaei, M.; Hanifehpour, Y.; Mokhtarzadeh, A.; Morsali, A.; Nanoscale Metal-Organic Frameworks: Recent Developments in Synthesis, Modifications and Bioimaging Applications. Chemosphere 2021, 281, 130717. DOI: 10.1016/j.chemosphere.2021.130717.
  • [123] Bellido, E.; Guillevic, M.; Hidalgo, T.; Santander-Ortega, M.J.; Serre, C.; Horcajada, P.; Understanding the Colloidal Stability of the Mesoporous MIL-100(Fe) Nanoparticles in Physiological Media. Langmuir 2014, 30, 5911-5920. DOI: 10.1021/la5012555
  • [124] Siadati, S.A.; Rezazadeh, S. The Extraordinary Gravity of Three Atom 4π-Components and 1,3-Dienes to C20-NXn Fullerenes; a New Gate to the Future of Nano Technology. Sci. Radices 2022, 01, 46-68. DOI: 10.58332/v22i1a04
  • [125] Zhao, D.; Zhang, W.; Wu, Z.H.; Xu, H.; Nanoscale Metal−Organic Frameworks and Their Nanomedicine Applications. Front. Chem. 2022, 9, 834171. DOI: 10.3389/fchem.2021.834171.
  • [126] Zhong, X. fang; Sun, X.; Nanomedicines Based on Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy. Acta Pharmacol. Sin. 2020, 41, 928-935. DOI: 10.1038/s41401-020-0414-6
  • [127] Yusuf, V.F.; Malek, N.I.; Kailasa, S.K.; Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7, 44507-44531. DOI: 10.1021/acsomega.2c05310
  • [128] Butova, V. V; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C.; Metal-Organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85, 280-307. DOI: 10.1070/rcr4554
  • [129] Yuan, G.; Tan, L.; Wang, P.; Wang, Y.; Wang, C.; Yan, H.; Wang, Y.Y.; MOF-COF Composite Photocatalysts: Design, Synthesis, and Mechanism. Cryst. Growth Des. 2022, 22, 893-908. DOI: 10.1021/acs.cgd.1c01071
  • [130] Akeremale, O.K.; Ore, O.T.; Bayode, A.A.; Badamasi, H.; Adedeji, J.; Durodola, S.S.; Results in Chemistry Synthesis , Characterization , and Activation of Metal Organic Frameworks ( MOFs ) for the Removal of Emerging Organic Contaminants through the Adsorption-Oriented Process : A Review. Results Chem. 2023, 5, 100866. DOI: 10.1016/j.rechem.2023.100866
  • [131] Hausdorf, S.; Baitalow, F.; Seidel, J.; Mertens, F.O.R.L.; Gaseous Species as Reaction Tracers in the Solvothermal Synthesis of the Zinc Oxide Terephthalate MOF-5. J. Phys. Chem. A 2007, 111, 4259-4266. DOI: 10.1021/jp0708291
  • [132] Scheurle, P.I.; Mähringer, A.; Haug, T.; Biewald, A.; Axthammer, D.; Hartschuh, A.; Harms, L.; Wittstock, G.; Medina, D.D.; Bein, T.; Helical Anthracene-Ethyne-Based MOF-74 Analogue. Cryst. Growth Des. 2022, 22, 2849-2853. DOI: 10.1021/acs.cgd.1c01145
  • [133] Ma, D.; Han, G.; Gao, Z.F.; Chen, S.B.; Continuous UiO-66-Type Metal-Organic Framework Thin Film on Polymeric Support for Organic Solvent Nanofiltration. ACS Appl. Mater. Interfaces 2019, 11, 45290-45300. DOI: 10.1021/acsami.9b16332
  • [134] Pichon, A.; Lazuen-Garay, A.; James, S.L.; Solvent-Free Synthesis of a Microporous Metal-Organic Framework. CrystEngComm 2006, 8, 211-214. DOI: 10.1039/b513750k
  • [135] Taheri, M.; Bernardo, I. Di; Lowe, A.; Nisbet, D.R.; Tsuzuki, T.; Green Full Conversion of ZnO Nanopowders to Well-Dispersed Zeolitic Imidazolate Framework-8 (ZIF-8) Nanopowders via a Stoichiometric Mechanochemical Reaction for Fast Dye Adsorption. Cryst. Growth Des. 2020, 20, 2761-2773. DOI: 10.1021/acs.cgd.0c00129
  • [136] Couzon, N.; Ferreira, M.; Duval, S.; El-Achari, A.; Campagne, C.; Loiseau, T.; Volkringer, C.; Microwave-Assisted Synthesis of Porous Composites MOF-Textile for the Protection against Chemical and Nuclear Hazards. ACS Appl. Mater. Interfaces 2022, 14, 21497-21508. DOI: 10.1021/acsami.2c03247
  • [137] Babu, R.; Roshan, R.; Kathalikkattil, A.C.; Kim, D.W.; Park, D.W.; Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Appl. Mater. Interfaces 2016, 8, 33723-33731. DOI: 10.1021/acsami.6b12458
  • [138] Qiu, M.; Guan, Q.; Li, W.; Controllable Assembly of Al-MIL-100 via an Inducing Occupied Effect and Its Selective Adsorption Activity. Cryst. Growth Des. 2016, 16, 3639-3646. DOI: 10.1021/acs.cgd.6b00103
  • [139] Andrade, P.H.M.; Henry, N.; Volkringer, C.; Loiseau, T.; Vezin, H.; Hureau, M.; Moissette, A.; Iodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution. ACS Appl. Mater. Interfaces 2022, 14, 29916-29933. DOI: 10.1021/acsami.2c07288
  • [140] Tao, C.A.; Hu, Z.; Meng, L.; Wang, F.; Wang, J.; Sonochemical Synthesis of Photoluminescent Nanoscale Eu(III)-Containing Metal-Organic Frameworks. Medziagotyra 2015, 21, 554-558. DOI: 10.5755/j01.ms.21.4.9695
  • [141] Li, Z.-Q.; Qiu, L.-G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z.-Y.; Jiang, X.; Ultrasonic Synthesis of the Microporous Metal-Organic Framework Cu3(BTC)2 at Ambient Temperature and Pressure: An Efficient and Environmentally Friendly Method. Mater. Lett. 2009, 63, 78-80. DOI: 10.1016/j.matlet.2008.09.010
  • [142] Ho, P.H.; Salles, F.; Renzo, F. Di; Trens, P.; Nationale, E.; Chimie, S. De; Charles, I.; One-Pot Synthesis of 5-FU @ ZIF-8 and Ibuprofen @ ZIF-8 Nanoparticles. DOI: 10.1016/j.ica.2019.119229
  • [143] Jodłowski, P.J.; Kurowski, G.; Dymek, K.; Oszajca, M.; Piskorz, W.; Hyjek, K.; Wach, A.; Pajdak, A.; Mazur, M.; Rainer, D.N.; et al. From Crystal Phase Mixture to Pure Metal-Organic Frameworks - Tuning Pore and Structure Properties. Ultrason. Sonochem. 2023, 95, 106377. DOI: 10.1016/j.ultsonch.2023.106377
  • [144] Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J.; Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks. Cryst. Growth Des. 2012, 12, 3489-3498. DOI: 10.1021/cg300552w
  • [145] Gao, Z.; Lai, Y.; Zhang, L.; Lin, Y.; Xiao, L.; Luo, Y.; Luo, F.; Synthesis, Characterization, and Electrocatalytic Activity Exploration of MOF-74: A Research-Style Laboratory Experiment. J. Chem. Educ. 2021, 98, 3341-3347. DOI: 10.1021/acs.jchemed.1c00583
  • [146] Li, X.; Lachmanski, L.; Safi, S.; Sene, S.; Serre, C.; Grenèche, J.M.; Zhang, J.; Gref, R.; New Insights into the Degradation Mechanism of Metal-Organic Frameworks Drug Carriers. Sci. Rep. 2017, 7, 13142. DOI: 10.1038/s41598-017-13323-1
  • [147] Bishwas, M. Sen; Poddar, P.; Raman Spectroscopy-Based Sensitive, Fast and Reversible Vapour Phase Detection of Explosives Adsorbed on Metal-Organic Frameworks UiO-67. New J. Chem. 2021, 45, 7145-7153. DOI: 10.1039/d0nj04915h
  • [148] Socrates, G.; Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 2001, Wiley. ISBN 0471852988
  • [149] Roman, J.; Szumera, M.; Dymek, K.; Kurowski, G.; Kuterasin, Ł.; Sitarz, M.; Pajdak, A.; Kurach, Ł.; Boguszewska-czubara, A.; Jodłowaki, P.J.; In Search of Effective UiO-66 Metal − Organic Frameworks for Artificial Kidney Application. ACS Appl. Mater. Interfaces 2021, 13, 45149-54160. DOI: 10.1021/acsami.1c05972
  • [150] Li, X.; Porcino, M.; Qiu, J.; Constantin, D.; Martineau-Corcos, C.; Gref, R.; Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings: Insights on Drug Location by Solid State Nmr Spectroscopy. Nanomaterials 2021, 11, 945. DOI: 10.3390/nano11040945
  • [151] Du, X.; Fan, R.; Qiang, L.; Xing, K.; Ye, H.; Ran, X.; Song, Y.; Wang, P.; Yang, Y. Controlled Zn2+-Triggered Drug Release by Preferred Coordination of Open Active Sites within Functionalization Indium Metal Organic Frameworks. ACS Appl. Mater. Interfaces 2017, 9, 28939-28948. DOI:10.1021/acsami.7b09227
  • [152] Jodłowski, P.J.; Dymek, K.; Kurowski, G.; Jaśkowska, J.; Bury, W.; Pander, M.; Wnorowska, S.; Targowska-Duda, K.; Piskorz, W.; Wnorowski, A.; et al. Zirconium-Based Metal-Organic Frameworks as Acriflavine Cargos in the Battle against Coronaviruses─A Theoretical and Experimental Approach. ACS Appl. Mater. Interfaces 2022, 14, 25, 28615-28627. DOI:10.1021/acsami.2c06420
  • [153] Rezaei, M.; Abbasi, A.; Varshochian, R.; Dinarvand, R.; Jeddi-Tehrani, M. NanoMIL-100(Fe) Containing Docetaxel for Breast Cancer Therapy. Artif. Cells, Nanomedicine Biotechnol. 2018, 46, 1390-1401. DOI:10.1080/21691401.2017.1369425
  • [154] Javanbakht, S.; Shadi, M.; Mohammadian, R.; Shaabani, A.; Amini, M.M.; Pooresmaeil, M.; Salehi, R. Facile Preparation of PH-Responsive k-Carrageenan/Tramadol Loaded UiO-66 Bio-Nanocomposite Hydrogel Beads as a Nontoxic Oral Delivery Vehicle. J. Drug Deliv. Sci. Technol. 2019, 54, 101311. DOI:10.1016/j.jddst.2019.101311
  • [155] Shi, K.; Aviles-Espinosa, R.; Rendon-Morales, E.; Woodbine, L.; Salvage, J.P.; Maniruzzaman, M.; Nokhodchi, A. Magnetic Field Triggerable Macroporous PDMS Sponge Loaded with an Anticancer Drug, 5-Fluorouracil. ACS Biomater. Sci. Eng. 2021, 7, 180-195. DOI:10.1021/acsbiomaterials.0c01608
  • [156] Ni, W.; Xiao, X.; Li, Y.; Li, L.; Xue, J.; Gao, Y.; Ling, F. DETA Impregnated Attapulgite Hybrid ZIF-8 Composite as an Adsorbent for the Adsorption of Aspirin and Ibuprofen in Aqueous Solution. New J. Chem. 2021, 45, 5637-5644. DOI:10.1039/d0nj05743f
  • [157] Yang, B.; Wheeler, J..; Sorensen, B.; Steagall, R.; Nielson, T.; Yao, J.; Mendez-Arroyo, J.; Ess, D.H. Computational Determination of Coordination Structure Impact on Adsorption and Acidity of Pristine and Sulfated MOF-808. Mater. Adv. 2021, 2, 4246-4254. DOI:10.1039/d1ma00330e
  • [158] Addicoat, M.A.; Vankova, N.; Akter, I.F.; Heine, T. Extension of the Universal Force Field to Metal-Organic Frameworks. J. Chem. Theory Comput. 2014, 10, 880-891, DOI:10.1021/ct400952t
  • [159] Zhang, X.; Shi, X.; Zhao, Q.; Li, Y.; Wang, J.; Yang, Y.; Bi, F.; Xu, J.; Liu, N. Defects Controlled by Acid-Modulators and Water Molecules Enabled UiO-67 for Exceptional Toluene Uptakes : An Experimental and Theoretical Study. Chem. Eng. J. 2022, 427, 131573. DOI:10.1016/j.cej.2021.131573.
  • [160] Shearer, G.C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K.P. Defect Engineering: Tuning the Porosity and Composition of the Metal-Organic Framework UiO-66 via Modulated Synthesis. Chem. Mater. 2016, 28, 3749-3761. DOI:10.1021/acs.chemmater.6b00602
  • [161] Feng, Y.; Chen, Q.; Jiang, M.; Yao, J. Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Ind. Eng. Chem. Res. 2019, 58, 17646-17659. DOI:10.1021/acs.iecr.9b03188
  • [162] Vermoortele, F.; Bueken, B.; Voorde, B. Van De; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Speybroeck, V. Van; Kirschhock, C.; et al. Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal − Organic Frameworks: The Unique Case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 31, 11465-11468. DOI: 10.1021/ja405078u
  • [163] Zhang, L.; Li, Y.; Yuan, S.; Zhang, S.; Zheng, H.; Liu, J. Bioactivity Focus of α -Cyano-4- Hydroxycinnamic Acid ( CHCA ) Leads to Effective Multifunctional Aldose Reductase Inhibitors. Scientific Reports , 2016, 6, 1-13. DOI:10.1038/pj.2016.37
  • [164] Atzori, C.; Shearer, G.C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K.P.; Bordiga, S. Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. J. Phys. Chem. C 2017, 121, 9312-9324. DOI:10.1021/acs.jpcc.7b00483
  • [165] Zahn, G.; Zerner, P.; Lippke, J.; Kempf, F.L.; Lilienthal, S.; Schröder, C.A.; Schneider, A.M.; Behrens, P. Insight into the Mechanism of Modulated Syntheses: In Situ Synchrotron Diffraction Studies on the Formation of Zr-Fumarate MOF. CrystEngComm 2014, 16, 9198-9207. DOI:10.1039/c4ce01095g
  • [166] Mao, W.; Huang, R.; Xu, H.; Wang, H.; Huang, Y.; Huang, S.; Zhou, J. Effects of Acid Modulators on the Microwave-Assisted Synthesis of Cr/Sn Metal-Organic Frameworks. Polymers (Basel). 2022, 14, 3826. DOI:10.3390/polym14183826
  • [167] Mocniak, K.A.; Kubajewska, I.; Spillane, D.E.M.; Williams, G.R.; Morris, R.E. Incorporation of Cisplatin into the Metal-Organic Frameworks UiO66-NH2 and UiO66-Encapsulation vs. Conjugation. RSC Adv. 2015, 5, 83648-83656. DOI:10.1039/c5ra14011k
  • [168] Molavi, H.; Zamani, M.; Aghajanzadeh, M.; Kheiri Manjili, H.; Danafar, H.; Shojaei, A. Evaluation of UiO-66 Metal Organic Framework as an Effective Sorbent for Curcumin’s Overdose. Appl. Organomet. Chem. 2018, 32, 1-10. DOI:10.1002/aoc.4221
  • [169] Custelcean, R.; Gorbunova, M.G. A Metal−Organic Framework Functionalized with Free Carboxylic Acid Sites and Its Selective Binding of a Cl(H2O)4- Cluster. J. Am. Chem. Soc. 2005, 127, 16362-16363. DOI:10.1021/ja055528o
  • [170] Yin, X.B.; Sun, Y.Q.; Yu, H.; Cheng, Y.; Wen, C. Design and Multiple Applications of Mixed-Ligand Metal-Organic Frameworks with Dual Emission. Anal. Chem. 2022, 94, 4938-4947. DOI:10.1021/acs.analchem.1c02949
  • [171] Mortazavi, S.-S.; Abbasi, A.; Masteri-Farahani, M. Influence of SO3H Groups Incorporated as Brønsted Acidic Parts by Tandem Post-Synthetic Functionalization on the Catalytic Behavior of MIL-101(Cr) MOF for Methanolysis of Styrene Oxide. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 599, 124703. DOI:10.1016/j.colsurfa.2020.124703
  • [172] Fan, G.; Dundas, C.M.; Zhang, C.; Lynd, N.A.; Keitz, B.K. Sequence-Dependent Peptide Surface Functionalization of Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 18601-18609. DOI:10.1021/acsami.8b05148
  • [173] Ge, J.; Liu, L.; Shen, Y. Facile Synthesis of Amine-Functionalized UiO-66 by Microwave Method and Application for Methylene Blue Adsorption. J. Porous Mater. 2016, 24, 647-655. DOI:10.1007/s10934-016-0301-1
  • [174] Molavi, H.; Moghimi, H.; Taheri, R.A. Zr-Based MOFs with High Drug Loading for Adsorption Removal of Anti-Cancer Drugs: A Potential Drug Storage. Appl. Organomet. Chem. 2020, 34, 4-9. DOI:10.1002/aoc.5549
  • [175] Cunha, D.; Gaudin, C.; Colinet, I.; Horcajada, P.; Maurin, G.; Serre, C. Rationalization of the Entrapping of Bioactive Molecules into a Series of Functionalized Porous Zirconium Terephthalate MOFs. J. Mater. Chem. B . 2013, 1, 1101-1108. DOI:10.1039/c2tb00366j
  • [176] Fantham, M.; Mishra, A.; Silvestre-albero, J.; Haddad, S.; Aba, I.; Osterrieth, J.W.M.; Schierle, G.S.K.; Kaminski, C.F.; Forgan, R.S.; Fairen-jimenez, D. Design of a Functionalized Metal − Organic Framework System for Enhanced Targeted Delivery to Mitochondria ́. J. Am. Chem. Soc., 2020, 142, 6661-6674. DOI:10.1021/jacs.0c00188
  • [177] Abánades Lázaro, I.; Wells, C.J.R.; Forgan, R.S. Multivariate Modulation of the Zr MOF UiO-66 for Defect-Controlled Combination Anticancer Drug Delivery. Angew. Chemie - Int. Ed. 2020, 59, 5211-5217. DOI:10.1002/anie.201915848
  • [178] Maranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 4458. DOI:10.3390/ijms23084458
  • [179] Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-Pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962-968. DOI:10.1021/jacs.5b11720
  • [180] Sun, X.; He, G.; Xiong, C.; Wang, C.; Lian, X.; Hu, L.; Li, Z.; Dalgarno, S.J.; Yang, Y.W.; Tian, J. One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 3679-3693. DOI:10.1021/acsami.0c20617
  • [181] Vassaki, M.; Papathanasiou, K.E.; Hadjicharalambous, C.; Chandrinou, D.; Turhanen, P.; Choquesillo-Lazarte, D.; Demadis, K.D. Self-Sacrificial MOFs for Ultra-Long Controlled Release of Bisphosphonate Anti-Osteoporotic Drugs. Chem. Commun. 2020, 56, 5166-5169. DOI:10.1039/d0cc00439a
  • [182] He, C.; Liu, D.; Lin, W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015, 115, 11079-11108. DOI:10.1021/acs.chemrev.5b00125
  • [183] Wang, X.; Wang, X.; Han, Y.; Li, H.; Kang, Q.; Wang, P.; Zhou, F. Immunoassay for Cardiac Troponin i with Fluorescent Signal Amplification by Hydrolyzed Coumarin Released from a Metal-Organic Framework. ACS Appl. Nano Mater. 2019, 2, 7170-7177. DOI:10.1021/acsanm.9b01685
  • [184] Li, L.; Han, S.; Zhao, S.; Li, X.; Liu, B.; Liu, Y. Chitosan Modified Metal-Organic Frameworks as a Promising Carrier for Oral Drug Delivery. RSC Adv. 2020, 10, 45130-45138. DOI:10.1039/d0ra08459j
  • [185] Winterlich, M.; Efthymiou, C.G.; Papawassiliou, W.; Carvalho, J.P.; Pell, A.J.; Mayans, J.; Escuer, A.; Carty, M.P.; McArdle, P.; Tylianakis, E.; et al. A Biocompatible ZnNa2-Based Metal-Organic Framework with High Ibuprofen, Nitric Oxide and Metal Uptake Capacity. Mater. Adv. 2020, 1, 2248-2260. DOI:10.1039/d0ma00450b
  • [186] Pooresmaeil, M.; Namazi, H. D-Mannose Functionalized MgAl-LDH/Fe-MOF Nanocomposite as a New Intelligent Nanoplatform for MTX and DOX Co-Drug Delivery. Int. J. Pharm. 2022, 625, 122112. DOI:10.1016/j.ijpharm.2022.122112
  • [187] Zhang, F.M.; Dong, H.; Zhang, X.; Sun, X.J.; Liu, M.; Yang, D.D.; Liu, X.; Wei, J.Z. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Appl. Mater. Interfaces 2017, 9, 27332-27337. DOI:10.1021/acsami.7b08451
  • [188] Devautour-Vinot, S.; Martineau, C.; Diaby, S.; Ben-Yahia, M.; Miller, S.; Serre, C.; Horcajada, P.; Cunha, D.; Taulelle, F.; Maurin, G. Caffeine Confinement into a Series of Functionalized Porous Zirconium MOFs: A Joint Experimental/Modeling Exploration. J. Phys. Chem. C 2013, 117, 11694-11704. DOI:10.1021/jp402916y
  • [189] Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S.R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal-Organic Frameworks. Chem. Mater. 2013, 25, 2767-2776. DOI:10.1021/cm400798p
  • [190] Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; et al. Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules. Nat. Commun. 2015, 6, 4-11. DOI:10.1038/ncomms8240
  • [191] Li, S.; Dharmarwardana, M.; Welch, R.P.; Benjamin, C.E.; Shamir, A.M.; Nielsen, S.O.; Gassensmith, J.J. Investigation of Controlled Growth of Metal-Organic Frameworks on Anisotropic Virus Particles. ACS Appl. Mater. Interfaces 2018, 10, 18161-18169. DOI:10.1021/acsami.8b01369
  • [192] Alsaiari, S.K.; Qutub, S.S.; Sun, S.; Baslyman, W.; Aldehaiman, M.; Alyami, M.; Almalik, A.; Halwani, R.; Merzaban, J.; Mao, Z.; et al. Sustained and Targeted Delivery of Checkpoint Inhibitors by Metal-Organic Frameworks for Cancer Immunotherapy. Sci. Adv. 2021, 7, 1-11. DOI:10.1126/sciadv.abe7174
  • [193] Karimi Alavijeh, R.; Akhbari, K. Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin. Inorg. Chem. 2020, 59, 3570-3578. DOI:10.1021/acs.inorgchem.9b02756
  • [194] Cao, S.; Tang, T.; Xi, C.; Chen, Z. Fabricating Magnetic GO/ZIF-8 Nanocomposite for Amphetamine Adsorption from Water: Capability and Mechanism. Chem. Eng. J. 2021, 422, 130096. DOI:10.1016/j.cej.2021.130096
  • [195] Usman, K.A.S.; Maina, J.W.; Seyedin, S.; Conato, M.T.; Payawan, L.M.; Dumée, L.F.; Razal, J.M. Downsizing Metal-Organic Frameworks by Bottom-up and Top-down Methods. NPG Asia Mater. 2020, 12, 58. DOI:10.1038/s41427-020-00240-5
  • [196] Lei, B.; Wang, M.; Jiang, Z.; Qi, W.; Su, R.; He, Z. Constructing Redox-Responsive Metal-Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 16698-16706. DOI:10.1021/acsami.7b19693
  • [197] Winarta, J.; Shan, B.; Mcintyre, S.M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal-Organic Framework. Cryst. Growth Des. 2020, 20, 1347-1362. DOI:10.1021/acs.cgd.9b00955
  • [198] Dai, S.; Simms, C.; Dovgaliuk, I.; Patriarche, G.; Tissot, A.; Parac-vogt, T.N.; Serre, C. Monodispersed MOF-808 Nanocrystals Synthesized via a Scalable Room-Temperature Approach for E Ffi Cient Heterogeneous Peptide Bond Hydrolysis. Chem. Mater. 2021, 33, 7057-7066. DOI:10.1021/acs.chemmater.1c02174
  • [199] Javanbakht, S.; Hemmati, A.; Namazi, H.; Heydari, A. Carboxymethylcellulose-Coated 5-Fluorouracil@MOF-5 Nano-Hybrid as a Bio-Nanocomposite Carrier for the Anticancer Oral Delivery. Int. J. Biol. Macromol. 2020, 155, 876-882. DOI:10.1016/j.ijbiomac.2019.12.007
  • [200] Souza, B.E.; Möslein, A.F.; Titov, K.; Taylor, J.D.; Rudić, S.; Tan, J.C. Green Reconstruction of MIL-100 (Fe) in Water for High Crystallinity and Enhanced Guest Encapsulation. ACS Sustain. Chem. Eng. 2020, 8, 8247-8255. DOI:10.1021/acssuschemeng.0c01471
  • [201] Li, A.; Yang, X.; Chen, J. A Novel Route to Size-Controlled MIL-53(Fe) Metal-Organic Frameworks for Combined Chemodynamic Therapy and Chemotherapy for Cancer. RSC Adv. 2021, 11, 10540-10547. DOI:10.1039/d0ra09915e
  • [202] Bikiaris, N.D.; Ainali, N.M.; Christodoulou, E.; Kostoglou, M.; Kehagias, T.; Papasouli, E.; Koukaras, E.N.; Nanaki, S.G. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on Mpeg-Pcl Amphiphilic Copolymer and Fe-Btc Porous Metal-Organic Framework. Nanomaterials 2020, 10, 1-30. DOI:10.3390/nano10122490
  • [203] Leng, X.; Dong, X.; Wang, W.; Sai, N.; Yang, C.; You, L.; Huang, H.; Yin, X.; Ni, J. Biocompatible Fe-Based Micropore Metal-Organic Frameworks as Sustained-Release Anticancer Drug Carriers. Molecules 2018, 23, 1-13. DOI:10.3390/molecules23102490
  • [204] Chu, B.; Lan, C.; Yin, J.-H.; Liu, M.; Meng, L.; Xu, N. NH2-MIL-101(Fe) Nanozyme-Based Dual-Modality Sensor for Determination of Alendronate Sodium and Study of Two-Dimensional Correlation Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121752. DOI:10.1016/j.saa.2022.121752
  • [205] Golmohamadpour, A.; Bahramian, B.; Shafiee, A.; Ma’mani, L. Slow Released Delivery of Alendronate Using β-Cyclodextrine Modified Fe-MOF Encapsulated Porous Hydroxyapatite. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1991-2000. DOI:10.1007/s10904-018-0871-2
  • [206] Ruyra, A.; Yazdi, A.; Espín, J.; Carné-Sánchez, A.; Roher, N.; Lorenzo, J.; Imaz, I.; Maspoch, D. Synthesis, Culture Medium Stability, and in Vitro and in Vivo Zebrafish Embryo Toxicity of Metal-Organic Framework Nanoparticles. Chem. - A Eur. J. 2015, 21, 2508-2518. DOI:10.1002/chem.201405380
  • [207] Denisov, G.L.; Primakov, P. V; Korlyukov, A.A. Solvothermal Synthesis of the Metal-Organic Framework MOF-5 in Autoclaves Prepared by 3D Printing. 2019, 45, 836-842. DOI:10.1134/S1070328419120030
  • [208] Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and Hydrogen-Storage Behavior of Metal - Organic Framework MOF-5. Int. J. Hydrogen Energy 2009, 34, 1377-1382. DOI:10.1016/j.ijhydene.2008.11.048
  • [209] Yin, D.; Hu, X.; Cai, M.; Wang, K.; Peng, H.; Bai, J.; Xv, Y.; Fu, T.; Dong, X.; Ni, J.; et al. Preparation, Characterization, and In Vitro Release of Curcumin-Loaded IRMOF-10 Nanoparticles and Investigation of Their Pro-Apoptotic Effects on Human Hepatoma HepG2 Cells. Molecules 2022, 27, 3940. DOI:10.3390/molecules27123940
  • [210] Zhong, T.; Li, D.; Li, C.; Zhang, Z.; Wang, G. Turn-on Fluorescent Sensor Based on Curcumin@MOF-5 for the Sensitive Detection of Al(3). Anal. Methods 2022, 14, 2714-2722. DOI:10.1039/d2ay00849a
  • [211] Velásquez-Hernández, M.D.J.; Ricco, R.; Carraro, F.; Limpoco, F.T.; Linares-Moreau, M.; Leitner, E.; Wiltsche, H.; Rattenberger, J.; Schröttner, H.; Frühwirt, P.; et al. Degradation of ZIF-8 in Phosphate Buffered Saline Media. CrystEngComm 2019, 21, 4538-4544. DOI:10.1039/c9ce00757a
  • [212] Jodłowski, P.J.; Kurowski, G.; Kuterasiński, Ł.; Sitarz, M.; Jeleń, P.; Jaśkowska, J.; Kołodziej, A.; Pajdak, A.; Majka, Z.; Boguszewska-Czubara, A. Cracking the Chloroquine Conundrum: The Application of Defective UiO-66 Metal-Organic Framework Materials to Prevent the Onset of Heart Defects : The Vivo and in Vitro. ACS Appl. Mater. Interfaces 2021, 13, 312-323. DOI:10.1021/acsami.0c21508
  • [213] Saeb, M.R.; Rabiee, N.; Mozafari, M.; Verpoort, F.; Voskressensky, L.G.; Luque, R. Metal - Organic Frameworks ( MOFs ) for Cancer Therapy. Materials 2021, 14, 7277. DOI: 10.3390/ma14237277
  • [214] Wang, Z.; Fu, Y.; Kang, Z.; Liu, X.; Chen, N.; Wang, Q.; Tu, Y.; Wang, L.; Song, S.; Ling, D.; et al. Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA-Metal-Organic Frameworks with Soluble Exoskeleton. J. Am. Chem. Soc. 2017, 139, 15784-15791. DOI:10.1021/jacs.7b07895
  • [215] He, L.; Liu, Y.; Lau, J.; Fan, W.; Li, Q.; Zhang, C. Recent Progress in Nanoscale Metal-Organic Frameworks for Drug Release and Cancer Therapy. Nanomedicine 2019, 14, 1343-1365. DOI:10.2217/nnm-2018-0347
  • [216] Nurhayati, S.; Nisa, K.; Indrianingsih, A.W.; Darsih, C.; Kismurtono, M. Formulation and in Vitro Study of Propranolol Hydrochloride Controlled Release from Carboxymethyl Chitosan-Based Matrix Tablets. Indones. J. Chem. 2013, 13, 242-247. DOI:10.22146/ijc.21283
  • [217] Lawson, S.; Rownaghi, A.A.; Rezaei, F. Combined Ibuprofen and Curcumin Delivery Using Mg-MOF-74 as a Single Nanocarrier. ACS Appl. Bio Mater. 2022, 5, 265-271. DOI:10.1021/acsabm.1c01067
  • [218] Russo, V.; Hmoudah, M.; Broccoli, F.; Iesce, M.R.; Jung, O.-S.; Di Serio, M. Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. Front. Chem. Eng. 2020, 2, 1-13. DOI:10.3389/fceng.2020.581487
  • [219] Bůžek, D.; Adamec, S.; Lang, K.; Demel, J. Metal-Organic Frameworks: Vs. Buffers: Case Study of UiO-66 Stability. Inorg. Chem. Front. 2021, 8, 720-734. DOI:10.1039/d0qi00973c
  • [220] Awasthi, G.; Shivgotra, S.; Nikhar, S.; Sundarrajan, S.; Ramakrishna, S.; Kumar, P. Progressive Trends on the Biomedical Applications of Metal Organic Frameworks. Polymers (Basel). 2022, 14, 1-29. DOI:10.3390/polym14214710
  • [221] Singh, N.; Qutub, S.; Khashab, N.M. Biocompatibility and Biodegradability of Metal Organic Frameworks for Biomedical Applications. J. Mater. Chem. B 2021, 9, 5925-5934. DOI:10.1039/d1tb01044a
  • [222] Zhang, Y.; Yan, B. A Novel Cucurbit[7]Uril Anchored Bis-Functionalized Metal-Organic Framework Hybrid and Its Potential Use in Fluorescent Analysis of Illegal Stimulants in Saliva. Sensors Actuators, B Chem. 2020, 324, 128656. DOI:10.1016/j.snb.2020.128656
  • [223] Sun, R.W.Y.; Zhang, M.; Li, D.; Li, M.; Wong, A.S.T. Enhanced Anti-Cancer Activities of a Gold(III) Pyrrolidinedithiocarbamato Complex Incorporated in a Biodegradable Metal-Organic Framework. J. Inorg. Biochem. 2016, 163, 1-7. DOI:10.1016/j.jinorgbio.2016.06.020
  • [224] Pooresmaeil, M.; Asl, E.A.; Namazi, H. A New PH-Sensitive CS/Zn-MOF@GO Ternary Hybrid Compound as a Biofriendly and Implantable Platform for Prolonged 5-Fluorouracil Delivery to Human Breast Cancer Cells. J. Alloys Compd. 2021, 885, 160992. DOI:10.1016/j.jallcom.2021.160992
  • [225] Liu, J.; Li, Y.; Lou, Z. Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustain. 2022, 14, 1-17. DOI:10.3390/su14105768
  • [226] Anderson, S.L.; Stylianou, K.C. Biologically Derived Metal Organic Frameworks. Coord. Chem. Rev. 2017, 349, 102-128. DOI:10.1016/j.ccr.2017.07.012
  • [227] Mon, M.; Bruno, R.; Lappano, R.; Maggiolini, M.; Di Donna, L.; Ferrando Soria, J.; Armentano, D.; Pardo, E. A Biocompatible Aspartic-Decorated Metal-Organic Framework with Tubular Motif Degradable under Physiological Conditions. Inorg. Chem. 2021, 60, 14221-14229. DOI:10.1021/acs.inorgchem.1c01701
  • [228] Khandelwal, G.; Maria Joseph Raj, N.P.; Vivekananthan, V.; Kim, S.-J. Biodegradable Metal-Organic Framework MIL-88A for Triboelectric Nanogenerator. iScience 2021, 24, 102064. DOI:10.1016/j.isci.2021.102064
  • [229] Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; et al. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172-178. DOI:10.1038/nmat2608
  • [230] Colwell, K.A.; Jackson, M.N.; Torres-Gavosto, R.M.; Jawahery, S.; Vlaisavljevich, B.; Falkowski, J.M.; Smit, B.; Weston, S.C.; Long, J.R. Buffered Coordination Modulation as a Means of Controlling Crystal Morphology and Molecular Diffusion in an Anisotropic Metal-Organic Framework. J. Am. Chem. Soc. 2021, 143, 5044-5052. DOI:10.1021/jacs.1c00136
  • [231] Bunzen, H. Chemical Stability of Metal-Organic Frameworks for Applications in Drug Delivery. ChemNanoMat 2021, 7, 998-1007. DOI:10.1002/cnma.202100226
  • [232] Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; et al. Biocompatible Zr-Based Nanoscale MOFs Coated with Modified Poly(ε-Caprolactone) as Anticancer Drug Carriers. Int. J. Pharm. 2016, 509, 208-218. DOI:10.1016/j.ijpharm.2016.05.048
  • [233] Nazari, M.; Rubio-Martinez, M.; Tobias, G.; Barrio, J.P.; Babarao, R.; Nazari, F.; Konstas, K.; Muir, B.W.; Collins, S.F.; Hill, A.J.; et al. Metal-Organic-Framework-Coated Optical Fibers as Light-Triggered Drug Delivery Vehicles. Adv. Funct. Mater. 2016, 26, 3244-3249. DOI:10.1002/adfm.201505260
  • [234] Wang, L.; Qu, X.; Zhao, Y.; Weng, Y.; Waterhouse, G.I.N.; Yan, H.; Guan, S.; Zhou, S. Exploiting Single Atom Iron Centers in a Porphyrin-like MOF for Efficient Cancer Phototherapy. ACS Appl. Mater. Interfaces 2019, 11, 35228-35237. DOI:10.1021/acsami.9b11238
  • [235] Ren, S.Z.; Wang, B.; Zhu, X.H.; Zhu, D.; Liu, M.; Li, S.K.; Yang, Y.S.; Wang, Z.C.; Zhu, H.L. Oxygen Self-Sufficient Core-Shell Metal-Organic Framework-Based Smart Nanoplatform for Enhanced Synergistic Chemotherapy and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2020, 12, 24662-24674. DOI:10.1021/acsami.0c08534
  • [236] Zheng, Q.; Liu, X.; Zheng, Y.; Yeung, K.W.K.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Wang, X.; Wu, S. The Recent Progress on Metal-Organic Frameworks for Phototherapy. Chem. Soc. Rev. 2021, 50, 5086-5125. DOI:10.1039/d1cs00056j
  • [237] Akbar, M.U.; Badar, M.; Zaheer, M. Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal-Organic Framework. ACS Omega 2022, 7, 32588-32598. DOI:10.1021/acsomega.2c04144
  • [238] Zhan, X.Q.; Yu, X.Y.; Tsai, F.C.; Ma, N.; Liu, H.L.; Han, Y.; Xie, L.; Jiang, T.; Shi, D.; Xiong, Y. Magnetic MOF for AO7 Removal and Targeted Delivery. Crystals 2018, 8, 1-9. DOI:10.3390/cryst8060250
  • [239] Ke, F.; Yuan, Y.P.; Qiu, L.G.; Shen, Y.H.; Xie, A.J.; Zhu, J.F.; Tian, X.Y.; Zhang, L. De Facile Fabrication of Magnetic Metal-Organic Framework Nanocomposites for Potential Targeted Drug Delivery. J. Mater. Chem. 2011, 21, 3843-3848. DOI:10.1039/c0jm01770a
  • [240] Chen, J.; Liu, J.; Hu, Y.; Tian, Z.; Zhu, Y. Metal-Organic Framework-Coated Magnetite Nanoparticles for Synergistic Magnetic Hyperthermia and Chemotherapy with PH-Triggered Drug Release. Sci. Technol. Adv. Mater. 2019, 20, 1043-1054. DOI:10.1080/14686996.2019.1682467
  • [241] Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer. Pharmaceutics 2020, 12, 232. DOI:10.3390/pharmaceutics12030232
  • [242] Chen, X.; Tong, R.; Shi, Z.; Yang, B.; Liu, H.; Ding, S.; Wang, X.; Lei, Q.; Wu, J.; Fang, W. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. ACS Appl. Mater. Interfaces 2018, 10, 2328-2337. DOI:10.1021/acsami.7b16522
  • [243] Schnabel, J.; Ettlinger, R.; Bunzen, H. Zn-MOF-74 as PH-Responsive Drug-Delivery System of Arsenic Trioxide. ChemNanoMat 2020, 6, 1229-1236. DOI:10.1002/cnma.202000221
  • [244] Zhang, Y.; Lin, L.; Liu, L.; Liu, F.; Sheng, S.; Tian, H.; Chen, X. Positive Feedback Nanoamplifier Responded to Tumor Microenvironments for Self-Enhanced Tumor Imaging and Therapy. Biomaterials 2019, 216, 119255. DOI:10.1016/j.biomaterials.2019.119255
  • [245] Huizenga, D.E.; Szostak, J.W. A DNA Aptamer That Binds Adenosine and ATP. Biochemistry 1995, 34, 656-665. DOI:10.1021/bi00002a033
  • [246] Yang, X.; Tang, Q.; Jiang, Y.; Zhang, M.; Wang, M.; Mao, L. Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing. J. Am. Chem. Soc. 2019, 141, 3782-3786. DOI:10.1021/jacs.8b11996
  • [247] Ruffley, J.P.; Goodenough, I.; Luo, T.Y.; Richard, M.; Borguet, E.; Rosi, N.L.; Johnson, J.K. Design, Synthesis, and Characterization of Metal-Organic Frameworks for Enhanced Sorption of Chemical Warfare Agent Simulants. J. Phys. Chem. C 2019, 123, 19748-19758. DOI:10.1021/acs.jpcc.9b05574
  • [248] Cai, W.; Wang, J.; Chu, C.; Chen, W.; Wu, C.; Liu, G. Metal-Organic Framework-Based Stimuli-Responsive Systems for Drug Delivery. Adv. Sci. 2019, 6, 1801526. DOI:10.1002/advs.201801526
  • [249] Xing, K.; Fan, R.; Wang, F.; Nie, H.; Du, X.; Gai, S.; Wang, P.; Yang, Y. Dual-Stimulus-Triggered Programmable Drug Release and Luminescent Ratiometric PH Sensing from Chemically Stable Biocompatible Zinc Metal-Organic Framework. ACS Appl. Mater. Interfaces 2018, 10, 22746-22756. DOI:10.1021/acsami.8b06270
  • [250] Jiang, K.; Zhang, L.; Hu, Q.; Zhao, D.; Xia, T.; Lin, W.; Yang, Y.; Cui, Y.; Yang, Y.; Qian, G. Pressure Controlled Drug Release in a Zr-Cluster-Based MOF. J. Mater. Chem. B 2016, 4, 6398-6401. DOI:10.1039/c6tb01756h
  • [251] Liu, J.; Tang, M.; Zhou, Y.; Long, Y.; Cheng, Y.; Zheng, H. A Siramesine-Loaded Metal Organic Framework Nanoplatform for Overcoming Multidrug Resistance with Efficient Cancer Cell Targeting. RSC Adv. 2020, 10, 6919-6926. DOI:10.1039/c9ra09923a
  • [252] Gao, X.; Cui, R.; Song, L.; Liu, Z. Hollow Structural Metal-Organic Frameworks Exhibit High Drug Loading Capacity, Targeted Delivery and Magnetic Resonance/Optical Multimodal Imaging. Dalt. Trans. 2019, 48, 17291-17297. DOI:10.1039/c9dt03287h
  • [253] Alves, R.C.; Schulte, Z.M.; Luiz, M.T.; Bento Da Silva, P.; Frem, R.C.G.; Rosi, N.L.; Chorilli, M. Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N3-Bio-MOF-100 via Click Chemistry. Inorg. Chem. 2021, 60, 11739-11744. DOI:10.1021/acs.inorgchem.1c00538
  • [254] Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer. Pharmaceutics 2020, 12, 232. DOI:10.3390/pharmaceutics12030232
  • [255] Zhang, H.; Li, Q.; Liu, R.; Zhang, X.; Li, Z.; Luan, Y. A Versatile Prodrug Strategy to In Situ Encapsulate Drugs in MOF Nanocarriers: A Case of Cytarabine-IR820 Prodrug Encapsulated ZIF-8 toward Chemo-Photothermal Therapy. Adv. Funct. Mater. 2018, 28, 1-10. DOI:10.1002/adfm.201802830
  • [256] Iranpour, S.; Bahrami, A.R.; Sh. Saljooghi, A.; Matin, M.M. Application of Smart Nanoparticles as a Potential Platform for Effective Colorectal Cancer Therapy. Coord. Chem. Rev. 2021, 442, 213949. DOI:10.1016/j.ccr.2021.213949
  • [257] Nirosha Yalamandala, B.; Shen, W.; Min, S.; Chiang, W.; Chang, S.; Hu, S. Advances in Functional Metal‐Organic Frameworks Based On‐Demand Drug Delivery Systems for Tumor Therapeutics. Adv. NanoBiomed Res. 2021, 1, 2100014. DOI:10.1002/anbr.202100014
  • [258] Demir Duman, F.; Monaco, A.; Foulkes, R.; Becer, C.R.; Forgan, R.S. Glycopolymer-Functionalized MOF-808 Nanoparticles as a Cancer-Targeted Dual Drug Delivery System for Carboplatin and Floxuridine. ACS Appl. Nano Mater. 2022, 5, 13862-13873. DOI:10.1021/acsanm.2c01632
  • [259] Abánades Lázaro, I.; Wells, C.J.R.; Forgan, R.S. Multivariate Modulation of the Zr MOF UiO‐66 for Defect‐Controlled Combination Anticancer Drug Delivery. Angew. Chemie 2020, 132, 5249-5255. DOI:10.1002/ange.201915848
  • [260] Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817-1825. DOI:10.1056/NEJMoa1011923
  • [261] Wu, J.; Ouyang, D.; He, Y.; Su, H.; Yang, B.; Li, J.; Sun, Q.; Lin, Z.; Cai, Z. Synergistic E Ff Ect of Metal − Organic Framework / Gallic Acid in Enhanced Laser Desorption / Ionization Mass Spectrometry. ACS Appl. Mater. Interfaces 2019, 11, 38255-38264. DOI:10.1021/acsami.9b11100
  • [262] Lawson, H.D.; Walton, S.P.; Chan, C. Metal − Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004-7020. DOI:10.1021/acsami.1c01089
  • [263] Abu-jaish, A.; Jumaa, S.; Karaman, R. Prodrug Overview. In Prodrugs Design: A New Era; Karaman, R., Ed.; 2014, 77-102, Nova Publisher: Hauppauge, NY, USA. DOI:10.13140/2.1.3247.1361
  • [264] Larasati, L.; Lestari, W.W.; Firdaus, M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. Bull. Chem. Soc. Jpn. 2022, 95, 1561-1577. DOI:10.1246/bcsj.20220218
  • [265] Hong, Y.H.; Narwane, M.; Liu, L.Y.M.; Huang, Y. Da; Chung, C.W.; Chen, Y.H.; Liao, B.W.; Chang, Y.H.; Wu, C.R.; Huang, H.C.; et al. Enhanced Oral NO Delivery through Bioinorganic Engineering of Acid-Sensitive Prodrug into a Transformer-like DNIC@MOF Microrod. ACS Appl. Mater. Interfaces 2022, 14, 3849-3863. DOI:10.1021/acsami.1c21409
  • [266] Wang, L.; Xu, H.; Gao, J.; Yao, J.; Zhang, Q. Recent Progress in Metal-Organic Frameworks-Based Hydrogels and Aerogels and Their Applications. Coord. Chem. Rev. 2019, 398, 213016. DOI:10.1016/j.ccr.2019.213016
  • [267] Hou, X.; Sun, J.; Lian, M.; Peng, Y.; Jiang, D.; Xu, M.; Li, B.; Xu, Q. Emerging Synthetic Methods and Applications of MOF-Based Gels in Supercapacitors, Water Treatment, Catalysis, Adsorption, and Energy Storage. Macromol. Mater. Eng. 2022, 2200469, 1-23. DOI:10.1002/mame.202200469
  • [268] Yao, S.; Chi, J.; Wang, Y.; Zhao, Y.; Luo, Y.; Wang, Y. Zn-MOF Encapsulated Antibacterial and Degradable Microneedles Array for Promoting Wound Healing. Adv. Healthc. Mater. 2021, 10, 1-10. DOI:10.1002/adhm.202100056
  • [269] Yang, X.X.; Feng, P.; Cao, J.; Liu, W.; Tang, Y. Composition-Engineered Metal-Organic Framework-Based Microneedles for Glucose-Mediated Transdermal Insulin Delivery. ACS Appl. Mater. Interfaces 2020, 12, 13613-13621. DOI:10.1021/acsami.9b20774
  • [270] Yin, M.; Wu, J.; Deng, M.; Wang, P.; Ji, G.; Wang, M.; Zhou, C.; Blum, N.T.; Zhang, W.; Shi, H.; et al. Multifunctional Magnesium Organic Framework-Based Microneedle Patch for Accelerating Diabetic Wound Healing. ACS Nano 2021, 15, 17842-17853. DOI:10.1021/acsnano.1c06036
  • [271] Pal, S.; Su, Y.Z.; Chen, Y.W.; Yu, C.H.; Kung, C.W.; Yu, S.S. 3D Printing of Metal-Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Appl. Mater. Interfaces 2022, 14, 28247-2825. DOI:10.1021/acsami.2c02690
  • [272] Lim, G.J.H.; Wu, Y.; Shah, B.B.; Koh, J.J.; Liu, C.K.; Zhao, D.; Cheetham, A.K.; Wang, J.; Ding, J. 3D-Printing of Pure Metal-Organic Framework Monoliths. ACS Mater. Lett. 2019, 1, 147-153. DOI:10.1021/acsmaterialslett.9b00069
  • [273] Lawson, S.; Alwakwak, A.A.; Rownaghi, A.A.; Rezaei, F. Gel-Print-Grow: A New Way of 3D Printing Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2020, 12, 56108-56117. DOI:10.1021/acsami.0c18720
  • [274] Zhao, D.; Zhang, W.; Yu, S.; Xia, S.L.; Liu, Y.N.; Yang, G.J. Application of MOF-Based Nanotherapeutics in Light-Mediated Cancer Diagnosis and Therapy. J. Nanobiotechnology 2022, 20, 1-28. DOI:10.1186/s12951-022-01631-2
  • [275] Dekrafft, K.E.; Boyle, W.S.; Burk, L.M.; Zhou, O.Z.; Lin, W. Zr- and Hf-Based Nanoscale Metal-Organic Frameworks as Contrast Agents for Computed Tomography. J. Mater. Chem. 2012, 22, 18139-18144. DOI:10.1039/C2JM32299D
  • [276] Osterrieth, J.W.M.; Fairen-jimenez, D. Metal - Organic Framework Composites for Theragnostics and Drug Delivery Applications. 2020, 2000005, 1-14. DOI:10.1002/biot.202000005
  • [277] Quijia, C.R.; Alves, R.C.; Hanck-Silva, G.; Galvão Frem, R.C.; Arroyos, G.; Chorilli, M. Metal-Organic Frameworks for Diagnosis and Therapy of Infectious Diseases. Crit. Rev. Microbiol. 2022, 48, 161-196. DOI:10.1080/1040841X.2021.1950120
  • [278] Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. A Review on Contemporary Metal-Organic Framework Materials. Inorganica Chim. Acta 2016, 446, 61-74. DOI:10.1016/j.ica.2016.02.062
  • [279] Wu, H.; Chua, Y.S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal − Organic Framework UiO-66 and Their Important E Ff Ects on Gas Adsorption. J. Am. Chem. Soc. 2013, 135, 10525-10532. DOI:10.1021/ja404514r
  • [280] De Andrade, J.R.; Oliveira, M.F.; Da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103-3127. DOI:10.1021/acs.iecr.7b05137
  • [281] Zhou, Q.; Liu, G. Urea-Functionalized MIL-101(Cr)@AC as a New Adsorbent to Remove Sulfacetamide in Wastewater Treatment. Ind. Eng. Chem. Res. 2020, 59, 12056-12064 DOI:10.1021/acs.iecr.0c01037
  • [282] Ongari, D.; Liu, Y.M.; Smit, B. Can Metal-Organic Frameworks Be Used for Cannabis Breathalyzers? ACS Appl. Mater. Interfaces 2019, 11, 34777-34786. DOI:10.1021/acsami.9b13357
  • [283] Zhang, Z.; Han, W.; Lou, T.; Ma, L.; Zhou, W.; Xu, Z.; Chen, M.; Wen, L.; Cheng, Y.; Ding, L. Nanoporous Ethylenediamine-Functionalized Metal-Organic Framework MIL-101 for the Removal of Proteins and Antipsychotic Drugs from Serum Samples. ACS Appl. Nano Mater. 2022, 5, 17325-17334. DOI:10.1021/acsanm.2c04560
  • [284] Hu, Z.; Wang, Y.; Zhao, D. The Chemistry and Applications of Hafnium and Cerium(Iv) Metal-Organic Frameworks. Chem. Soc. Rev. 2021, 50, 4629-4683. DOI:10.1039/D0CS00920B
  • [285] Rasheed, T.; Bilal, M.; Hassan, A.A.; Nabeel, F.; Bharagava, R.N.; Romanholo Ferreira, L.F.; Tran, H.N.; Iqbal, H.M.N. Environmental Threatening Concern and Efficient Removal of Pharmaceutically Active Compounds Using Metal-Organic Frameworks as Adsorbents. Environ. Res. 2020, 185, 109436. DOI:10.1016/j.envres.2020.109436
  • [286] Proenza, Y.G.; Longo, R.L. Simulation of the Adsorption and Release of Large Drugs by ZIF-8. J. Chem. Inf. Model. 2020, 60, 644-652. DOI:10.1021/acs.jcim.9b00893
  • [287] Farrando-Pérez, J.; Martinez-Navarrete, G.; Gandara-Loe, J.; Reljic, S.; Garcia-Ripoll, A.; Fernandez, E.; Silvestre-Albero, J. Controlling the Adsorption and Release of Ocular Drugs in Metal-Organic Frameworks: Effect of Polar Functional Groups. Inorg. Chem. 2022, 61, 18861-18872. DOI:10.1021/acs.inorgchem.2c02539
  • [288] Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. DOI:10.1126/science.1230444
  • [289] Maranescu, B.; Visa, A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int. J. Mol. Sci. 2022, 23, 4458. DOI:10.3390/ijms23084458
  • [290] Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. A Nanoscale Metal-Organic Framework to Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy. Angew. Chemie - Int. Ed. 2020, 59, 1108-1112. DOI:10.1002/anie.201911429
  • [291] Wang, H.; Chen, Y.; Wang, H.; Liu, X.; Zhou, X.; Wang, F. DNAzyme-Loaded Metal-Organic Frameworks (MOFs) for Self-Sufficient Gene Therapy. Angew. Chemie Int. Ed. 2019, 58, 7380-7384. DOI:10.1002/anie.201902714
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-50665db2-16c1-424e-a70e-cecb2fa573db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.