PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of Conventional Drinking Water Treatment Plants in Removing Microplastics in East Java, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microplastic (MP) has been a new emerging contaminant in the municipal water supply. A water treatment process is a key to producing high-quality and safe drinking water. The performance of a conventional drinking water treatment plant (CDWTP) to remove MPs is questionable. This research aimed to investigate the performance of 2 CDWTPs in East Java in removing MPs. Full-stage treatment in two CDWTPs consisted of intake, pre-sedimentation, coagulation-flocculation, sedimentation, sand filter, and disinfection units. Five L water samples were collected with a grab sampling technique in the sampling points of intake and outlet of each water treatment unit. MP abundance and characteristics in each sample were determined using a Sunshine SZM-45T-B1 stereomicroscope and a Nicolet i10 FTIR spectrophotometer. Total MP removal efficiencies in CDWTPs I and II were 66 and 62%, respectively. The coagulation-flocculation unit performed the highest MP removal efficiencies (56%). The MP with 1–350 μm size achieved lower removal efficiencies (33–53%) than that with 351-<5,000 μm size (53–76%). The removal efficiencies of fiber, fragment, and film in the CDWTPs were 61–65%; 86–100%; and 100%, respectively.
Rocznik
Strony
129--143
Opis fizyczny
Bibliogr. 76 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil and Planning Engineering, Institut Teknologi Adhi Tama Surabaya, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
Bibliografia
  • 1. Adib, D., Mafigholami, R., Tabeshkia, H. 2021. Identification of microplastics in conventional drinking water treatment plants in Tehran, Iran. J. Environ. Health Sci. and Eng., 19, 1817–1826. https://doi.org/10.1007/s40201-021-00737-3.
  • 2. Amereh, F., Babaei, M., Eslami, A., Fazelipour, S., Rafiee, M. 2020. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to global public health challenge. Environ. Pollut., 261, 114–158. https://doi.org/10.1016/j.envpol.2020.114158.
  • 3. Babel, S., Dork, H. 2021. Identification of microplastic contamination in drinking water treatment plants in Phnom Penh, Cambodia. J. Eng. Technol. Sci., 53(3), 210307. DOI: 10.5614/j.eng.technol.sci.2021.53.3.7.
  • 4. Buwono, N.R., Risjani, Y., Soegianto, A. 2021. Distribution of microplastic in relation to water quality parameters in the Brantas River, East Java, Indonesia. Environ. Technol. Innov., 24, 101915. https://doi.org/10.1016/j.eti.2021.101915.
  • 5. Cai, H., Chen, M., Chen, Q., Du, F., Liu, J., Shi, H. 2020. Microplastics quantification affected structure and pore size of filters. Chemosphere, 257, 127198. https://doi.org/10.1016/j.chemosphere.2020.127198.
  • 6. Cai, L., Tong, M., Wang, X., Kim, H. 2014. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environ. Sci. Technol., 48(13), 7323–7332. https://doi.org/10.1021/es5019652.
  • 7. Carr, S.A., Liu, J., Tesoro, A.G. 2016. Transport and fate of microplastic particles in wastewater treatment plants. Water Res., 91, 174–182. http://dx.doi.org/10.1016/j.watres.2016.01.002.
  • 8. Cherniak, S.L., Almuhtaram, H., McKie, M.J., Hermabessiere, L., Yuan, C., Rochman, C.M., Andrews, R.C. 2022. Conventional and biological treatment for the removal of microplastics from drinking water. Chemosphere, 288, 132587. https://doi.org/10.1016/j.chemosphere.2021.132587.
  • 9. Corcoran, P.L. 2022. Degradation of microplastics in the environment, in Rocha-Santos, T., Costa, M.F., Mouneyrac C. (Eds.), Handbook of microplastics in the environment. Springer, 531–542. https://doi.org/10.1007/978-3-030-39041-9_10.
  • 10. Crawford, C.B., Quinn, B. 2017. Microplastic Pollutants. Elsevier.
  • 11. Di, M., Wang, J. 2018. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci. Total Environ., 616-617, 1620–1627. https://doi.org/10.1016/j.scitotenv.2017.10.150.
  • 12. Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., Tassin, B. 2017. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut., 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013.
  • 13. Enfrin, M., Dumee, L.F., Lee, J. 2019. Nano/microplastics in water and wastewater treatment processes: Origin, impact, and potential solutions. Water Res., 161, 621–638. https://doi.org/10.1016/j.watres.2019.06.049.
  • 14. Frias, J.P.G.L., Nash, R. 2019. Microplastics: Finding a consensus on the definition. Mar. Pollut. Bull., 138, 145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022.
  • 15. Galloway, T.S. 2015. Micro- and nano-plastic and human health, in Bergmann, M., Gutow, L., Klages, M. (Eds.), Marine Anthropogenic Litter. Springer, 343–366. https://doi.org/10.1007/978-3-319-16510-3_13.
  • 16. Hendrick, D. 2011. Fundamentals of water treatment unit processes: physical, chemical, and biological, 1st edition. IWA Publishing.
  • 17. Horton, A.A., Svendsen, C., William, R.J., Spurgeon, D.H., Lahive, E. 2017. Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources, and methods for effective quantification. Mar. Pollut.. Bull., 114(1), 218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004.
  • 18. Iniguez, M.E., Conesa, J.A., Fullana, A. 2017. Microplastics in Spanish table salt. Sci. Rep., 8620. https://doi.org/10.1038/s41598-017-09128-x.
  • 19. Kankanige, D., Babel, S. 2020. Identification of microplastics (MPs) in conventional tap water sourced from Thailand. J. Eng. Technol. Sci., 52(1), 95–107. https://doi.org/10.5614/j.eng.technol.sci.2020.52.1.7.
  • 20. Koelmans, A.A., Nor, N.H.M., Hermsen, E., Kooi, M., Mintenig, S.M., de France, J. 2019. Microplastic in freshwaters and drinking water: Critical review and assessment of data quality. Water Res., 155, 410–422. https://doi.org/10.1016/j.watres.2019.02.054.
  • 21. Lapointe, M., Farner, J.M., Hernandez, L.M., Tufenkji, N. 2020. Understanding and improving microplastic removal during water treatment: impact of coagulation and flocculation. Environ. Sci. Technol., 54(14), 8719–8727. https://doi.org/10.1021/acs.est.0c00712.
  • 22. Lares, M., Ncibi, M.C., Sillanpää, M., Sillanpää, M. 2018. Occurrence, identification, and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res., 133, 236–246. https://doi.org/10.1016/j.watres.2018.01.049.
  • 23. Lassoued, M. 2017. An overview of Ngagel water treatment plant operations in terms of water quality efficiency and water stability. Master Thesis. Institut Teknologi Sepuluh Nopember, Surabaya.
  • 24. Li, C., Busquets, R., Campos, L.C. 2020a. Assessment of microplastic in freshwater systems: A review. Sci. Total Environ., 707, 135578. https://doi.org/10.1016/j.scitotenv.2019.135578.
  • 25. Li, Y., Li, W., Jarvis, P., Zhou, W., Zhang, J., Chen, J., Tan, Q., Tian, Y. 2020b. Occurrence, removal and potential threats associated with microplastics in drinking water sources. J. Environ. Chem. Eng., 8, 104527. https://doi.org/10.1016/j.jece.2020.104527.
  • 26. Liebezeit, G., Liebezeit, E. 2015. Origin of synthetic particles in honeys. Pol. J. Food Nutri. Sci., 65(2), 143–147. https://doi.org/10.1515/pjfns-2015-0025.
  • 27. Liebezeit, G., Liebezeit, E. 2014. Synthetic particles as contaminants in German beers. Food Addit. Contam.: Part A, 31(9), 1574–1578. https://doi.org/10.1080/19440049.2014.945099.
  • 28. Lestari, P., Trihadiningrum, Y., Wijaya, B.A., Yunus, K.A., Firdaus, M. 2020. Distribution of microplastics in Surabaya River, Indonesia. Sci. Total Environ., 726, 138560. https://doi.org/10.1016/j.scitotenv.2020.138560.
  • 29. Lu, H-C., Ziajahromi, S., Neale, P.A., Leusch, F.D.L. 2021. A systematic review of freshwater microplastics in water and sediments: Recommendations for harmonisation to enhance future study comparisons. Sci. Total Environ., 781, 146693. https://doi.org/10.1016/j.scitotenv.2021.146693.
  • 30. Lu, I.C., Chao, H.R., Mansor, W-N-W., Peng, C-W., Hsu, Y-C., Yu, T-Y., Chang, W-S., Fu, L-M. 2021. Levels of phthalates, bisphenol-A, nonylphenol, and microplastics in fish in the estuaries of Northern Taiwan and the impact on human health. Toxics, 9246. https://doi.org/10.3390/toxics9100246.
  • 31. Ma, B., Xue, W., Hu, C., Liu, H., Qu, J., Li, L. 2019a. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng J., 359, 159–167. https://doi.org/10.1016/j.cej.2018.11.155.
  • 32. Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., Qu, J. 2019b. Removal characteristics of microplastic by Fe-based coagulants during drinking water treatment. J. Environ. Sci., 78, 267–275. https://doi.org/10.1016/j.jes.2018.10.006.
  • 33. Manalu, A., Hariyadi, S., Wardiatno, Y. 2017. Microplastics abundance in coastal sediments of Jakarta Bay, Indonesia. AACL Bioflux, 10(5), 1164–1173. http://www.bioflux.com.ro/aacl.
  • 34. Masura, J., Baker, J., Foster, G., Arthur, C. 2015. Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48.
  • 35. Mendoza, L.M.R., Vargas, D.L., Balcer, M. 2021. Microplastics occurrence and fate in the environment. Curr. Opin. Green Sustain. Chem., 32, 100523. https://doi.org/10.1016/j.cogsc.2021.100523.
  • 36. Ministry of Work and Public Housing. 2019. Performance of regional water supply enterprise in 2019: Region II. Indonesian Ministry of Work and Public Housing, Jakarta. (in Indonesian)
  • 37. Mintenig, S.M., Ler, M.G.J., Primpke, S., Gerdts, G. 2019. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ., 648, 631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178.
  • 38. Na, S-H., Kim, M-J., Kim, J-T., Jeong, S., Lee, S., Chung, J., Kim, E-J. 2021. Microplastic removal in conventional drinking water treatment processes: performance, mechanism, and potential risk. Water Res., 202, 117417. https://doi.org/10.1016/j.watres.2021.117417.
  • 39. Natalia, Y. 2013. Analysis of pollution load capacity of Wonokromo River in Surabaya using the QUAL-2KW Method. Master Thesis. Institut Teknologi Sepuluh Nopember, Surabaya. (in Indonesian)
  • 40. Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., Pivokonsky, M. 2019. Microplastics in drinking water treatment – current knowledge research needs. Sci. Total Environ., 667, 730–740. https://doi.org/10.1016/j.scitotenv.2019.02.431.
  • 41. Obmann, B.E., Sarau, G., Holtmannspotter, H., Pischetrieder, M., Christiansen, S.H., Dicke, W. 2018. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res., 141, 307–316. https://doi.org/10.1016/j.watres.2018.05.027.
  • 42. Peng, G., Xu, P., Zhu, B., Bai, M., Li, D. 2017. Microplastic in freshwater river sediments in Shanghai, study of risk assessment in mega cities. Environ. Pollut., 234, 448–456. https://doi.org/10.1016/j.envpol.2017.11.034.
  • 43. Petersen, F., Hubbart, J.A. 2021. The occurrence and transport of microplastics: the state of the science. Sci. Total Environ., 758, 143936. https://doi.org/10.1016/j.scitotenv.2020.143936.
  • 44. Pivokonsky, M., Pivokonska, L., Novotna, K., Cermakova, L., Klimtova, M. 2020. Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment. Sci. Total Environ., 741, 140236. https://doi.org/10.1016/j.scitotenv.2020.140236.
  • 45. Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., Janda, V. 2018. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ., 643, 1644–1651. https://doi.org/10.1016/j.scitotenv.2018.08.102.
  • 46. Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C., Rocha-Santos, T. 2020. Environmental exposure to microplastics: an overview on possible human health effects. Sci. Total Environ., 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455.
  • 47. Radityaningrum, A.D., Trihadiningrum, Y., Mar’atusholihah, Soedjono, E.S., Herumurti, W. 2021. Microplastic contamination in water supply and the removal efficiencies of the treatment plants: A case of Surabaya City, Indonesia. J. Water Process Eng., 43, 102195. https://doi.org/10.1016/j.jwpe.2021.102195.
  • 48. Revel, M., Châtel, A., Mouneyrac, C. 2018. Micro(nano)plastics: A threat to human health?. Curr. Opin. Environ. Sci. Health, 1, 17–23. https://doi.org/10.1016/j.coesh.2017.10.003.
  • 49. Rochman, C.M. 2018. Microplastic researchfrom sink to source. Sci., 360, 6384, 28–29. DOI: 10.1126/science.aar7734.
  • 50. Said, N.I., Hartaja, D.R.K. 2018. The condition of the raw water quality of the Ngagel Instalation of Surabaya City Water Purification Plant. Jurnal Air Indonesia, 10(2) 52–66. (in Indonesian).
  • 51. Sarkar, D.J., Scientist, Sarkar, S.D., Das, B.K., Praharaj, J.K., Mahajan, D.K., Purokait, B., Mohanty, T.R., Mohanty, D., Gogoi, P., Kumar, S.V., Behera, B.K., Manna, R.K., Samanta, S. 2021. Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. J. Hazard. Mater., 413, 125347. https://doi.org/10.1016/j.jhazmat.2021.125347.
  • 52. Schymanski, D., Goldbeck, C., Humpf, H-U., Furst, P. 2018. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res., 129, 154–162. https://doi.org/10.1016/j.watres.2017.11.011.
  • 53. Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., Palanisami, T. 2021. Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment. J. Hazard. Mater., 404, 124004. https://doi.org/10.1016/j.jhazmat.2020.124004.
  • 54. Shen, M., Zeng, Z., Wen, X., Ren, X., Zeng, G., Zhang, Y., Xiao, R. 2021. Presence of microplastics in drinking water from freshwater sources: the investigation in Changsha China. Environ. Sci. Pollut. Res., https://doi.org/10.1007/s11356-021-13769-x.
  • 55. Shen, M., Song, B., Zhu, Y., Zeng, G., Zhang, Y., Yang, Y., Wen, X., Chen, M., Yi, H. 2020. Removal of microplastics via drinking water treatment: Current knowledge and future directions. Chemosphere, 251, 126612. https://doi.org/10.1016/j.chemosphere.2020.126612.
  • 56. Skaf, D.W., Punzi, P.L., Rolle, J.T., Kleinberg, K.A. 2020. Removal of micron sized microplastic particles from simulated drinking water via alum coagulation. Chem. Eng. J., 386, 123807. https://doi.org/10.1016/j.cej.2019.123807.
  • 57. Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D., Shi, H. 2016. Microplastics in Taihu Lake, China. Environ. Pollut., 216, 711–719. http://dx.doi.org/10.1016/j.envpol.2016.06.036.
  • 58. Sulistyo, E.N., Rahmawati, S., Putri, R.A., Arya, N., Eryan, Y.A. 2020. Identification of the existence and type of microplastic in code river fish, special region of Yogyakarta. EKSAKTA, 1(1), 85–91. https://doi.org/10.20885/EKSAKTA.vol1.iss1.art13.
  • 59. Talvitie, J., Mikola, A., Koistinen, A., Setälä, O. 2017a. Solutions to microplastic pollution – removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res., 123, 401–407. https://doi.org/10.1016/j.watres.2017.07.005.
  • 60. Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., Koistinen, A. 2017b. How well is microliter purified from wastewater? – a detailed study on the stepwise removal of microliterin a tertiary level wastewater treatment plant. Water Res., 109, 164–172. http://dx.doi.org/10.1016/j.watres.2016.11.046.
  • 61. Tong, H., Jiang, Q., Hu, X., Zhong, X. 2020. Occurrence and identification of microplastics in tap water from China. Chemosphere, 252, 126493. https://doi.org/10.1016/j.chemosphere.2020.126493.
  • 62. Wang, Z., Lin, T., Chen, W. 2020. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ., 700, 134520. https://doi.org/10.1016/j.scitotenv.2019.134520.
  • 63. Wang, W., Ndungu, A.W., Li, Z., Wang, J. 2017. Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China. Sci. Total Environ., 575, 1369–1374. https://doi.org/10.1016/j.scitotenv.2016.09.213.
  • 64. Weber, F., Kerpen, J., Wolf, S., Langer, R., Eschweiler, V. 2021. Investigation of microplastics contamination in drinking water of a German city. Sci. Total Environ., 755, 143421. https://doi.org/10.1016/j.scitotenv.2020.143421.
  • 65. Woodall, L.C., Gwinnett, C., Packer, M., Thompson, R.C., Robinson, L.F., Paterson, G.L.J. 2015. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull., 95, 40–46. http://dx.doi.org/10.1016/j.marpolbul.2015.04.044.
  • 66. World Bank Group. 2018. Indonesia marine debris hotspot, Rapid Synthesis Report April 2018.
  • 67. Wu, J., Zhang, Y. Tang, Y. 2022a. Fragmentation of microplastics in the drinking water treatment process – a case study in Yangtze River region China. Sci. Total Environ., 806, 150545. https://doi.org/10.1016/j.scitotenv.2021.150545.
  • 68. Wu, F., Wang, J., Jiang, S., Zeng, H., Wu, Q., Chen, Q., Chen, J. 2022b. Effect of cascade damming on microplastics transport in rivers: A large-scale investigation in Wujiang River, Southwest China. Chemosphere, 299, 134455. https://doi.org/10.1016/j.chemosphere.2022.134455.
  • 69. Wu, P., Huang, J., Zheng, Y., Yang, Y., Zhang, Y., He, F., Chen, H., Quan, G., Yan, J., Li, T., Gao, B. 2019. Environmental occurrences, fate, and impact of microplastics. Ecotoxicol. Environ. Saf., 184, 109612. https://doi.org/10.1016/j.ecoenv.2019.109612.
  • 70. Xue, J., Samaei, S.H-A., Chen, J., Doucet, A., Wai Ng, K.T. 2022. What have we known so far about microplastics in drinking water treatment? A timely review. Front. Environ. Sci. Eng., 16(5), 58. https://doi.org/10.1007/s11783-021-1492-5.
  • 71. Yuan, C., Almuhtaram, H., McKie, M.J., Andrews, R.C. 2022. Assessment of microplastic sampling and extraction methods for drinking waters. Chemosphere, 286, 131881. https://doi.org/10.1016/j.chemosphere.2021.131881.
  • 72. Zha, F., Shang, M., Ouyang, Z., Guo, X. 2022. The aging behaviors and release of microplastics: A review. Gondwana Res., 108, 60–71. https://doi.org/10.1016/j.gr.2021.10.025.
  • 73. Zhang, Q., Xu, E.G., Li, J., Chen, Q., Ma, L., Zeng, E.Y., Shi, H. 2020. A review of microplastics in table salt, drinking water, and air: direct human exposure. Environ. Sci. Technol., 54, 3740–3751. https://doi.org/ 10.1021/acs.est.9b04535.
  • 74. Zhang, K., Gong, W., Lv, J., Xiong, X., Wu, C. 2015. Accumulation of floating microplastics behind the Three Gorges Dam. Environ. Pollut., 254, 117–123. https://doi.org/10.1016/j.envpol.2015.04.023.
  • 75. Zhou, G., Wang, Q., Li, J., Li, Q., Xu, H., Ye, Q., Wang, Y., Shu, S., Zhang, J. 2021. Removal of polystyrene and polyethylene microplastics using PAC and FeCl3 coagulation: performance and mechanism. Sci. Total Environ., 752, 141837. https://doi.org/10.1016/j.scitotenv.2020.141837.
  • 76. Ziajahromi, S., Neale, P.A., Silveira, I.T., Chua, A., Leusch, F. 2021. An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere, 263, 128294. https://doi.org/10.1016/j.chemosphere.2020.128294
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4df72694-8d80-4413-8da2-fbf33c1e1428
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.