PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compression behavior of ultra-high performance concrete (UHPC) confined with high-strength rectilinear ties

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To explore the compression behavior of ultra-high-performance concrete (UHPC) confined with rectilinear ties, sixty specimens were tested under axial compression. The investigated parameters included the compressive strength of UHPC in the range of 84.72–155.45 MPa, the volumetric ratio of rectilinear ties in the range of 0.9–2.0%, and the yield strength of rectilinear ties in the range of 873–1215 MPa. The failure modes of specimens were the formation of an inclined shear failure plane. The axial stress–axial strain curves and the axial stress–lateral strain curves of confined UHPC were analyzed. Besides, the effects of investigated parameters on the load-bearing capacity and ductility of confined UHPC were analyzed. Moreover, the prediction models for the lateral strain of rectilinear ties at peak stress, load-capacity and ductility of confined UHPC were developed.
Rocznik
Strony
art. no. e27, 2022
Opis fizyczny
Bibliogr. 43 poz. fot., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, China
  • Key Lab of Structures Dynamic Behavior and Control Ministry of Education, Harbin Institute of Technology, Harbin 150090, China
  • Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
  • School of Civil Engineering, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, China
autor
  • School of Civil Engineering, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, China
Bibliografia
  • 1. Azmee NM, Shafiq N. Ultra-high performance concrete: from fundamental to applications. Case Study Constr Mater. 2018;9:1–12.
  • 2. Shi CJ, Wu ZM, Xiao JF, Wang DH, Huang ZY, Fang ZF. A review on ultra-high performance concrete: part I. Raw materials and mixture design. Constr Build Mater. 2015;101(1):741–51.
  • 3. Nematollahi B, Saifulnaz MRR, Jaafar MS, Voo YL. A review on ultra high performance ‘ductile’ concrete (UHPdC) technology. Int J Comput Civ Struct Eng. 2012;2(3):1003–18.
  • 4. Hoang AL, Fehling E, Lai B. Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube. Eng Struct. 2019;187(5):457–77.
  • 5. Deng ZC, Yao JS. Axial compression behavior of ultra-high performance concrete columns confined by high-strength stirrups. Acta Mater Compos Sin. 2020;37(10):2590–601.
  • 6. Chang W, Zheng WZ, Chen P. Compressive behavior of high performance concrete (HPC) and high performance fiber-reinforced concret (HPFRC) confined with spiral stirrups. J Mater Civ Eng. 2021;33(4):04021034.
  • 7. Li B. Strength and ductility of reinforced concrete members and frames constructed using high strength concrete. Christchurch: Civil Engineering at the University of Canterbury; 1993.
  • 8. Richart FE, Brandtzaeg A, Brown RL. A study of the failure of concrete under combined compressive stress. Urbana: University of Illinois Bulletin; 1928.
  • 9. Richart FE, Brandtzaeg A, Brown RL. The failure of plain and spirally reinforced concrete in compression. Urbana: University of Illinois Engineering Experiment Station Bulletin no. 190; 1929.
  • 10. Mander JB, Priestley MJN, Park R. Observed stress–strain behavior of confined concrete. J Struct Eng. 1988;114(8):1827–49.
  • 11. Mander JB, Priestley MJN, Park R. Theoretical stress–strain model for confined concrete. J Struct Eng. 1988;108(12):2703–22.
  • 12. Saatcioglu M, Razvi SR. Circular high-strength concrete columns under concentric compression. ACI Struct J. 1999;96(5):1438–47.
  • 13. Assa B, Nishiyama M, Watanabe F. New approach for modeling confinement concrete I: circular columns. J Struct Eng. 2001;127(7):743–50.
  • 14. Montgomery DL. Behavior of spirally reinforced high strength concrete columns under axial loading. Doctoral and master thesis. National Library of Canada. 1996.
  • 15. Baduge SK, Mendis P, Ngo T, Portella J, Nguyen K. Understanding failure and stress–strain behavior of high strength concrete (> 100 MPa) confined by lateral reinforcement. Constr Build Mater. 2018;189(20):62–77.
  • 16. Cusson D, Paultre P. Stress–strain model for confined high-strength concrete. J Struct Eng. 1995;121(3):468–77.
  • 17. Razvi SR, Saatcioglu M. Tests of high-strength concrete columns under concentric loading. Report no. OCCEERC 96-03, Ottawa Caeleton Earthquake Engineering Research Centre, Ottawa, ON, Canada, 1996.
  • 18. Yang X, Zohrevamnd P, Mirmiran A. Behavior of ultra-high-performance concrete confined by steel. J Mater Civ Eng. 2016;28(10):04016113.
  • 19. Chen MY, Zheng WZ, Hou XM. Experimental study on mechanical behavior of RPC circular columns confined by high strength stirrups under axial compression. Funct Mater. 2017;24(1):82–90.
  • 20. Ministry of Housing and Urban-rural Development of the People’s Republic of China, GB/T 50010-2010: Code for design of concrete structures. China Ministry of construction. Beijing: China Architecture and Building Press. 2010.
  • 21. China Standardization Administration, GB/T 31387-2015: Reactive Powder Concrete. China Standardization Administration, Beijing: China Standard Press, 2015.
  • 22. China Standardization Administration, GB/T 228.1-2012: Metallic materials-tensile testing—part 1: methods of test at room temperature. China Standardization Administration, Beijing: China Standard Press. 2012.
  • 23. Ministry of Housing and Urban-rural Development of the People’s Republic of China, GB/T 50512-2012: Standard for test method of concrete structures. China Ministry of construction. Beijing: China Architecture and Building Press. 2012.
  • 24. Guo ZH, Zhang XQ, Zhang DC, Wang RQ. Experimental investigation of the complete stress–strain curve of concrete. J Build Struct. 1982;01:1–12.
  • 25. Sharma UK, Bhargava P, Kaushik SK. Behavior of confined high strength concrete columns under axial compression. J Adv Concr Technol. 2005;3(2):267–81.
  • 26. Foster SJ, Attard MM. Experimental tests on eccentrically loaded high strength concrete columns. ACI Struct J. 1997;94(3):295–302.
  • 27. Légeron F, Paultre P. Uniaxial confinement model for normal- and high strength concrete columns. J Struct Eng. 2003;129(2):241–52.
  • 28. Wang N, Shi QX, Zheng W, Zheng GD, Wang HL. A uniaxial compressive model for concrete confined with stirrups. J Build Mater. 2019;22(6):933–40.
  • 29. Wei Y, Wu YF. Compression behavior of concrete columns confined by high strength steel wire. Constr Build Mater. 2014;54:443–53.
  • 30. Sheikh SA, Uzumeri SM. Strength and ductility of tied concrete columns. J Struct Eng. 1980;106(5):1079–102.
  • 31. Yang K, Shi QX, Jiang WS. Calculation of high-strength lateral ties stress of high-strength confined concrete. In: The 10th national academic conference on basic theory and engineering application of concrete structures, Dalian. 2009. p. 421–6.
  • 32. Saatcioglu M, Razvi SR. Strength and ductility of confined concrete. J Struct Eng. 1992;118(6):1590–607.
  • 33. Guralnick SA, Gunawan L. Design of concrete members subjected to triaxial compression. Pract Period Struct Des Constr. 2009;14(1):43–9.
  • 34. Foster SJ, Attard MM. Strength and ductility of fiber-reinforced high-strength concrete columns. J Struct Eng. 2001;127(1):28–34.
  • 35. Zaina M, Foster SJ. Testing of concentric and eccentrically loaded fiber-reinforced HSC columns. Sydney: School of Civil and Environmental Engineering, University of New South Wales; 2005.
  • 36. Shin HO, Min KH, Mitchell D. Confinement of ultra-high performance fiber reinforced concrete columns. Compos Struct. 2017;176:124–42.
  • 37. Hong KN, Han SH, Yi ST. High-strength concrete columns confined by low-volumetric-ratio lateral ties. Eng Struct. 2006;28(9):1346–53.
  • 38. Hong KN, Akiyama M, Yi SY, Suzuki M. Stress–strain behavior of high-strength concrete columns confined by low-volumetric ratio rectangular ties. Mag Concr Res. 2006;58(2):101–15.
  • 39. Cusson D, Paultre P. High-strength concrete columns confined by rectangular ties. J Struct Eng. 1998;120(3):783–804.
  • 40. Chung HS, Yang KH, Lee YH, Eun HC. Stress–strain curve of laterally confined concrete. Eng Struct. 2002;24(9):1153–63.
  • 41. Li YZ, Cao SY, Liang H, Ni XY, Jing DH. Axial compressive behavior of concrete columns with grade 600 MPa reinforcing bars. Eng Struct. 2018;172(1):497–507.
  • 42. Antonius A, Imran I, Setiyawan P. On the confined high-strength concrete and need of future research. Proceed Eng. 2017;2017(171):121–30.
  • 43. Saatcioglu M, Razvi SR. High-strength concrete columns with square sections under concentric compression. J Struct Eng. 1998;124(12):1438–47.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d7c8f74-7132-457e-9609-7994f68b23f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.