Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ukraine traditionally suffers from acute shortage of quality drinking water, and this problem has intensified recently due to military operations on its territory. The lack of water laboratories in the combat area made it impossible to monitor the quality of drinking water. Due to the pollution of water resources and the destruction of water supply systems, the population is forced to use water unsuitable for drinking. One of the important indicators of pollution is the high iron content in drinking water, which exceeds the maximum permissible standards in many regions of Ukraine. To analyze the iron content in water, the spectrophotometric method with 1,10-phenanthroline was chosen, which is simplest, less labor-intensive and energy-consuming. If it is impossible to carry out the analysis at the point of water sampling, the result obtained has a high error due to a decrease in the concentration of iron in the water over time. The reason for this effect is the rapid transition of iron from soluble to insoluble form. The aim of the research is to study the influence of temperature and acidity on the dynamics of iron concentration in drinking water and to develop recommendations for analyzing water for iron content in laboratory conditions. It has been proven that drinking water must be acidified to a level of pH = 1 immediately after water sampling. In the case of analyzing previously unacidified water, it should be heated to a temperature of 40 °C or higher in the presence of hydrochloric acid. It was established that the amount of total iron in the analyzed water exceeds the amount of dissolved iron by 6.4 times. The correspondence of drinking water with the requirements of the standard for iron content can only be established by determining the content of total iron in all its species.
Wydawca
Rocznik
Tom
Strony
269--277
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Chemical Engineering Department, Donetsk National Technical University, 2 Shybankova Sq., 85300, Pokrovsk, Ukraine
autor
- Chemical Engineering Department, Donetsk National Technical University, 2 Shybankova Sq., 85300, Pokrovsk, Ukraine
autor
- Chemical Engineering Department, Donetsk National Technical University, 2 Shybankova Sq., 85300, Pokrovsk, Ukraine
autor
- Chemical Engineering Department, Donetsk National Technical University, 2 Shybankova Sq., 85300, Pokrovsk, Ukraine
Bibliografia
- 1. Alberti, G., Emma, G., Colleoni, R., Nurchi, V.M., Pesavento, M., Biesuz, R. 2019. Simple solidphase spectrophotometric method for free iron(III) determination. Arabian Journal of Chemistry. 12(4), 573–579. https://doi.org/10.1016/j.arabjc.2014.08.017
- 2. Bowie, A.R., Achterberg, E.P., Mantoura, R.F.C., Paul, J.W. 1998. Determination of sub-nanomolar levels of iron in seawater using flow injection with chemiluminescence detection. Analytica Chimica Acta. Volume 361, 189–200.
- 3. Cha, K.W., Park, K.W. 1998. Determination of iron (III) with salicylic acid by the fluorescence quenching method. 46(6), 1567–1571. https://doi.org/10.1016/S0039-9140(98)00032-0
- 4. Cui, Y., Hu, Z.J., Yang, J.X., Gao, H.W. 2012. Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium. Microchim Acta. 176, 359–366. https://dx.doi.org/10.1007/s00604-011-0725-x
- 5. Esmaeilbeig, M.A., Khorram, M., Ayatollahi, S., Zolghadr, A.R. 2022. On the Hydrolysis of Iron Ions: DFT-Based Molecular Dynamics Perspective. Journal of Molecular Liquids, 367, Part A. https://doi.org/10.1016/j.molliq.2022.120323
- 6. FAO. 1998. Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements. Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September. https://www.fao.org/4/y2809e/y2809e00.pdf
- 7. Fernandes, S., Tlemçani, M., Bortoli, D., Feliciano, M., Lopes, M.E. 2023. A portable measurement device based on phenanthroline complex for iron determination in water. Sensors 23(3), 1058. https://doi.org/10.3390/s23031058
- 8. Freschi, G.P.G., Freschi, C.D., Neto, J.A.G. 2008. Evaluation of different rhodium modifers and coatings on the simultaneous determination of As, Bi, Pb, Sb, Se and of Co, Cr, Cu, Fe, Mn in milk by electrothermal atomic absorption spectrometry. Microchimica Acta. 161, 129–135. https://dx.doi.org/10.1007/s12161-011-9323-0
- 9. IHE Delft. 2020. Safe drinking water & sanitation. Institute for Water Education. https://www.un-ihe.org/theme/safe-drinking-water-sanitation
- 10. Ityel, D. 2011. Ground water: Dealing with iron contamination. Filtration & Separation. 48(1), 26–28. https://doi.org/10.1016/S0015-1882(11)70043-X
- 11. Jeroen de Jong, J., Schoemann V., Lannuzel, D., Tison, J.L., Mattielli, N. 2008. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for preconcentration and matrix separation. Analytica Chimica Acta. 623(2), 126–139. https://doi.org/10.1016/j.aca.2008.06.013
- 12. Kempf, T., Wollert, K. 2020. Iron and atherosclerosis: Too much of a good thing can be bad. European Heart Journal. 41(28), 2696–2698. https://doi.org/10.1093/eurheartj/ehz506
- 13. Kenkhuis, B., Somarakis, A., de Haan, L., Dzyubachyk O., IJsselsteijn M.E., . de Miranda N.F.C.C., Lelieveldt B.P.F., Dijkstra J., van Roon-Mom W.M.C., van der Weerd T.H.L. 2021. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathologica Communications. 9, 27–41. https://doi.org/10.1186/s40478-021-01126-5
- 14. Li, K., Reichmann, H. 2016. Role of iron in neurodegenerative diseases. Journal of Neural Transmission. 123, 389–399. https://doi.org/10.1007/s00702-016-1508-7
- 15. Li, P., Zhuang, Y., Shib, B., Zhang, K. 2022. Effects of boiling on iron particles in drinking water. Journal of Water Supply: Research and Technology-Aqua, 1, 83–95. https://doi.org/10.2166/aqua.2022.244
- 16. Lin, X., Xu, Q., Li, Y., Zhao, B., Li, L., Qiang, Zh. 2021. Modeling iron release from cast iron pipes in an urban water distribution system caused by source water switch. Journal of Environmental Sciences. Volume 110(1–3), 73–83. https://doi.org/10.1016/j.jes.2021.03.016
- 17. Nurchii, V.M., Cappai, R., Spano N., Sanna, G. 2021. A Friendly Complexing Agent for Spectrophotometric Determination of Total Iron. Molecules. 26(11), 3071– 3081. https://doi.org/10.3390/molecules26113071
- 18. Patra, S.G., Mondal, T., Sathiyan, K., Mizrahi, A., Kornweitz, H., Meyerstein, D. 2021. Na3[Ru2(µCO3)4] as a homogeneous catalyst for water oxidation; HCO3− as a co-catalyst. Catalysts, Article 281, 11(2), 1–21.. https://doi.org/10.3390/catal11020281
- 19. Phansi, P., Danchana, K., Ferreira, S.L.C., Cerdà, V. 2019. Multisyringe flow injection analysis (MSFIA) for the automatic determination of total iron in wines. Food Chemistry. 277, 261–266. 10.1016/j.foodchem.2018.10.115
- 20. Pikaar, I., Sharma K.R., Hu, S., Gernjak, W., Keller, J., Yuan, Z. 2014. Reducing sewer corrosion through integrated urban water management. Science. 345(6198), 812–814. https://www.science.org/doi/10.1126/science.1251418
- 21. Pyshyev, S., Zbykovskyy, Y., Shvets, I., Miroshnichenko, D., Kravchenko, S., Stelmachenko, S., Demchuk, Y., Vytrykush, N. 2023. Modeling of coke distribution in a dry quenching zone. ACS Omega, 8(22), 19464–19473. https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c00747
- 22. Regan, E.N. 2009. Hemochromatosis: pumping too much iron. The Nurse Practitioner, 34(6), 25–9. https://doi.org/10.1097/01.NPR.0000352285.81981.d5
- 23. Rich, H.W., Morel, F.M.M. 1990. Availability of welldefined iron colloids to the marine diatom Thdassiosiru weissflogii. Limnology and Oceanography. 35(3), 652–662. http://dx.doi.org/10.4319/lo.1990.35.3.0652
- 24. Sanjeevi, N., Freeland-Graves, J., Beretvas, N., Sachdev, P. 2018. Trace element status in type 2 diabetes: A meta-analysis. Journal of Clinical and Diagnostic Research. 12(5), OE01–OE08. https://doi.org/10.7860/JCDR/2018/35026.11541
- 25. Starovoit, A.G., Zbykovskyy, Y.I., Shvets, I.B. 2021. Environmental and economic assessment of reagent treatment for wastewater used in coke quenching. Coke and Chemistry, 64(11), 532–535. https://doi.org/10.3103/s1068364x21110077
- 26. Tautkus, S., Steponeniene, L., Kazlauskas, R. 2004. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry. Journal of the Serbian Chemical Society. 69(5), 393–402. https://doi.org/10.2298/JSC0405393T
- 27. Tomsič, G., Goljat, L., Budasheva, H., Korte, D., Bratkič, A., Franko, M. 2019. Determination of iron in environmental water samples by FIA-TLS. Acta Chimica Slovenica 66(4), 814–820 https://doi.org/10.17344/acsi.2018.4825
- 28. Tran, L.B., Nguyen, T.T., Padungthon, S., Huy, N.N. 2023. Development of facile field-test paper for rapid determination of iron contamination in natural water of acid sulfate soils. Water Practice and Technology. 18(12), 3271–3279. https://doi.org/10.2166/wpt.2023.213
- 29. Turchanina–Rybak, O., Zbikovskyy, Y., Shvets, I., Castelbranco, A. 2021. Investigation for a Sustainable Use of Fossil Coal through the Dynamics of Interaction of Smokeless Solid Fuel with Oxygen. Proceedings of the International Conference on Industrial Engineering and Operations Management Rome, Italy, 171–182. https://doi.org/10.46254/EU04.20210173
- 30. UN. 2023. The United Nations World Water Development Report 2023: partnerships and cooperation for water. United Nations Educational, Scientific and Cultural Organization, 210. https://www.unwater.org/publications/un-world-water-development-report-2023
- 31. Vijay, A.K., Sharma, V.K., Meyerstein, D. 2023. Overlooked Formation of Carbonate Radical Anions in the Oxidation of Iron(II) by Oxygen in the Presence of Bicarbonate. Angewandte Chemie International Edition. 62(36). https://doi.org/10.1002/anie.202309472
- 32. WHO. 2019. 1 in 3 people globally do not have access to safe drinking water. New report on inequalities in access to water, sanitation and hygiene. https://www.unicef.org/eap/press-releases/1-3-people-globally-donot-have-access-safe-drinking-water-unicef-who
- 33. World Bank. 2023. Ukraine Rapid Damage and Needs Assessment. Washington, D.C.: World Bank Group. https://documents1.worldbank.org/curated/en/099184503212328877/pdf/P1801740d1177f03c0ab180057556615497.pdf
- 34. World Resources Institute. 2023. Securing Freshwater for All. https://www.wri.org/freshwater
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d3b460f-e47d-4f45-83b7-e9c1c06d73fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.