PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Defense responses of the green microalgae Chlorella vulgaris to the vanadium pentoxide nanoparticles

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although vanadium-based nanomaterials have found extensive use in industry, their influence on ecosystems and living organisms is not yet well investigated. In this study, hydrothermal methods were utilized for the synthesis of vanadium pentoxide nanoparticles (V2O5 NPs). The gained NPs were characterized using XRD, FT-IR, EDS, DLS, SEM and TEM techniques. Subsequently, the toxic effects of V2O5 NPs on the model green microalgae Chlorella vulgaris were evaluated. According to the obtained results, V2O5 NPs caused a significant reduction in cell number and biomass production of algae in a dose and time dependent manner. Moreover, flow cytometric analysis confirmed a reduction in the quantity of living cells. Scanning electron microscopy showed plasmolysis and deformation of the cells after exposure to nanoparticles. The photosynthetic pigments and phenolics content exhibited a decrease in comparison with the control sample. Although, non-enzymatic antioxidant system in C. vulgaris displayed an average action, antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) showed a dose dependent increasing trend. These intercellular reactions designated the activation of the antioxidant defense system in response to the induced oxidative stress by V2O5 NPs.
Rocznik
Strony
446--460
Opis fizyczny
Bibliogr. 75 poz., fot., rys., wykr.
Twórcy
  • Department of Plant, Cell and Molecular Biology, University of Tabriz, Tabriz, Islamic Republic of Iran
  • Department of Plant, Cell and Molecular Biology, University of Tabriz, Tabriz, Islamic Republic of Iran
  • Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
  • Department of Inorganic Chemistry, University of Tabriz, Tabriz, Islamic Republic of Iran
  • Department of Plant, Cell and Molecular Biology, University of Tabriz Tabriz, Islamic Republic of Iran
Bibliografia
  • [1]. Abbas, Q.,Yousaf, B., Amina., Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646. https:// doi.org/10.1016/j.envint.2020.105646 PMID:32179325
  • [2]. Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., Choi, H. Y., & Cho, S. G. (2017). The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. International Journal of Molecular Sciences, 18 (1), 120. https://doi.org/10.3390/ijms18010120 PMID:28075405
  • [3]. Adochite, C., & Andronic, L. (2021). Toxicity of a binary mixture of TiO2 and imidacloprid applied to Chlorella vulgaris. International Journal of Environmental Research and Public Health, 18(15), 7785. https://doi.org/10.3390/ ijerph18157785 PMID:34360075
  • [4]. Aihemaiti, A., Gao, Y., Meng, Y., Chen, X., Liu, J., Xiang, H., Xu, Y., & Jiang, J. (2020). Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Science of the Total Environment, 712, 135637. https://doi.org/10.1016/j. scitotenv.2019.135637 PMID:31810710
  • [5]. Alghazeer, R., Whida, F., Abduelrhman, E., Gammoudi, F., & Naili, M. (2013). In vitro antibacterial activity of alkaloid extracts from green, red and brown macroalgae from western coast of Libya. African Journal of Biotechnology, 12(51), 7086-7091.
  • [6]. Aravantinou, A. F., Andreou, F., & Manariotis, I. D. (2020). Long-term toxicity of ZnO nanoparticles on Scenedesmus rubescens cultivated in semi-batch mode. Nanomaterials (Basel, Switzerland), 10(11), 2262. https://doi.org/10.3390/ nano10112262 PMID:33207538
  • [7]. Asghari, S., Rajabi, F., Tarrahi, R., Salehi-Lisar, S. Y., Asnaashari, S., Omidi, Y., & Movafeghi, A. (2020). Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: Evaluation of antioxidant systems and identification of intermediate biodegradation compounds. Journal of Applied Phycology, 32(1), 411-419. https://doi.org/10.1007/s10811-019-01921-7
  • [8]. Bameri, L., Sourinejad, I., Ghasemi, Z., & Fazelian, N. (2022). Toxicity of TiO2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under longterm exposure. Environmental Science and Pollution Research International, 29(20), 30427-30440. https://doi.org/10.1007/s11356-021-17870-z PMID:35000175
  • [9]. Barhoumi, L., & Dewez, D. (2013). Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed Research International, 2013, 647974. Advance online publication. https://doi.org/10.1155/2013/647974 PMID:24369015
  • [10]. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 PMID:942051
  • [11]. Cardinale, B. J., Bier, R., & Kwan, C. (2012). Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae. Journal of Nanoparticle Research, 14(8), 1-8. https://doi.org/10.1007/s11051-012-0913-6
  • [12]. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genetics and Molecular Biology, 35(4), 1011-1019. https://doi.org/10.1590/S1415-47572012000600016 PMID:23412747
  • [13]. Celekli, A., Gültekin, E., & Bozkurt, H. (2016). Morphological and biochemical responses of Spirogyra setiformis exposed to cadmium. Clean (Weinheim), 44(3), 256-262. https://doi.org/10.1002/clen.201400434
  • [14]. Chance, B., & Maehly, A. C. (1955). [136] Assay of catalases and peroxidases. Methods in Enzymology, 2, 764-775. https:// doi.org/10.1016/S0076-6879(55)02300-8
  • [15]. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Yao Wu Shi Pin Fen Xi, 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
  • [16]. Chen, X., Zhang, C., Tan, L., & Wang, J. (2018). Toxicity of Co nanoparticles on three species of marine microalgae. Environmental Pollution, 236, 454-461. https://doi.org/10.1016/j.envpol.2018.01.081 PMID:29414370
  • [17]. Costals, E. R., Masmitja, G., Almache, E., Pusay, B., Tiwari, K., Saucedo, E., Raj, C. J., Kim, B. C., Puigdollers, J., Martin, I., Voz, C., & Ortega, P. (2021). Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells. Materials Advances, 3(1), 337-345. https://doi.org/10.1039/ D1MA00812A PMID:35128416
  • [18]. Daglioglu, Y., & Öztürk, B. Y (2018). Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis). Caryologia, 71 (1), 13-23. https://doi.org/1 0.1080/00087114.2017.1400262
  • [19]. Daglioglu, Y., Öztürk, B. Y., & Khatami, M. (2023). Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microscopy Research and Technique, 86(6), 669-685. https://doi.org/10.1002/jemt.24306 PMID:36883432
  • [20]. Das, S., Roy, A., Barui, A. K., Alabbasi, M. M. A., Kuncha, M., Sistla, R., Sreedhar, B., & Patra, C. R. (2020). Anti-angiogenic vanadium pentoxide nanoparticles for the treatment of melanoma and their in vivo toxicity study. Nanoscale, 12(14), 7604-7621. https://doi.org/10.1039/D0NR00631A PMID:32232245
  • [21]. DeLorenzo, M. E., Taylor, L. A., Lund, S. A., Pennington, P. L., Strozier, E. D., & Fulton, M. H. (2002). Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. Archives of Environmental Contamination and Toxicology, 42(2), 173-181. https://doi.org/10.1007/s00244-001-0008-3 PMID:11815808
  • [22]. Dvořák, P., Krasylenko, Y., Zeiner, A., Šamaj, J., & Takác, T. (2021). Signaling toward reactive oxygen species-scavenging enzymes in plants. Frontiers in Plant Science, 11, 618835. https://doi.org/10.3389/fpls.2020.618835 PMID:33597960
  • [23]. Fazelian, N., Movafeghi, A., Yousefzadi, M., & Rahimzadeh, M. (2019). Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research International, 26(17), 17499-17511. https://doi.org/10.1007/s11356-019-05130-0 PMID:31016588
  • [24]. Feizi, S., Kosari-Nasab, M., Divband, B., Mahjouri, S., & Movafeghi, A. (2022). Comparison of the toxicity of pure and samarium-doped zinc oxide nanoparticles to the green microalga Chlorella vulgaris. Environmental Science and Pollution Research International, 29(21), 32002-32015. https://doi.org/10.1007/s11356-022-18539-x PMID:35015233
  • [25]. Ferdous, U. T., & Balia Yusof, Z. N. (2021). Insight into potential anticancer activity of algal flavonoids: Current status and challenges. Molecules (Basel, Switzerland), 26(22), 6844. https://doi.org/10.3390/molecules26226844 PMID:34833937
  • [26]. Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142. https://doi.org/10.1016/j.envexpbot.2018.05.003 PMID:30283160
  • [27]. Hamed, S. M., Zinta, G., Klöck, G., Asard, H., Selim, S., & AbdElgawad, H. (2017). Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicology and Environmental Safety, 140, 256-263. https://doi.org/10.1016/j.ecoenv.2017.02.055 PMID:28273625
  • [28]. Hernández-Zamora, M., Cristiani-Urbina, E., Martínez-Jerónimo, F., Perales-Vela, H. V., Ponce-Noyola, T., Montes-Horcasitas, M. C., & Cañizares-Villanueva, R. O. (2015). Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris. Environmental Science and Pollution Research International, 22(14), 10811-10823. https://doi.org/10.1007/s11356-015-4277-1 PMID:25772869
  • [29]. Janova, A., Kolackova, M., Bytesnikova, Z., Capal, P., Chaloupsky, P., Svec, P., Ridoskova, A., Cernei, N., Klejdus, B.,Richtera, L., Adam, V., & Huska, D. (2021). New insights into mechanisms of copper nanoparticle toxicity in freshwater algae Chlamydomonas reinhardtii: Effects on the pathways of secondary metabolites. Algal Research, 60, 102476. https://doi.org/10.1016/j.aigai.2021.102476
  • [30]. Karimi, R., Norastehnia, A., Abbaspour, H., Saedisar, S. N. A., & Naeemi, A. S. (2017a). Effects of copper oxide nanoparticles on the growth of Chlorella vulgaris. Progress in Biological Sciences, 7(1), 11-20. https://doi.org/10.22059/ PBS.2018.226951.1253
  • [31]. Karimi, R., Norastehnia, A., Abbaspour, H., Saedisar, S. N. A., & Naeemi, A. S. (2017b). Toxicity assessment of Anabaena sp. following exposure to copper oxide nanoparticles and sodium chloride. Applied Ecology and Environmental Research, 15(4), 2045-2059. https://doi.org/10.15666/ aeer/1504_20452059
  • [32]. Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2015). Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2 O3 and SiO2 nanoparticles. IET nanobiotechnology, 9(1), 27-34. 10.1049/ iet-nbt.2013.0067
  • [33]. Kera, Y., Teratani, S., & Hirota, K. (1967). Infrared Spectra of Surface V= O Bond of Vanadium Pentoxide. Bulletin of the Chemical Society of Japan, 40(10), 2458-2458. https://doi.org/10.1246/bcsj.40.2458
  • [34]. Khan, M., Khan, M. S. A., Borah, K. K., Goswami, Y., Hakeem, K. R., & Chakrabartty, I. (2021). The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances, 6, 100128. https://doi.org/10.1016/j.envadv.2021.100128
  • [35]. Kim, H. S., Kim, M., Park, W.-K., Yang, W.-G., Nayak, M., Shin, H. S., Cho, K., Kim, D., & Oda, T. (2022). Microalgae as an effective recovery agent for vanadium in aquatic environment. Energies, 15(12), 4467. https://doi.org/10.3390/en15124467
  • [36]. Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry, 27(9), 1825-1851. https://doi.org/10.1897/08-090.1 PMID:19086204
  • [37]. Kumar, K. S., Ganesan, K., & Rao, P. S. (2008). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty-An edible seaweed. Food Chemistry, 107(1), 289-295. https://doi.org/10.1016/j.foodchem.2007.08.016
  • [38]. Li, X., Sun, H., Mao, X., Lao, Y., & Chen, F. (2020). Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles. ACS Sustainable Chemistry & Engineering, 8(20), 7600-7608. https://doi.org/10.1021/acssuschemeng.0c00315
  • [39]. Li, Z., Cao, C., Li, M., Wang, L., Zhu, D., Xu, F., Huang, A., Jin, P., Yu, L., & Cao, X. (2023). Gradient variation oxygen-content vanadium-oxygen composite films with enhanced crystallinity and excellent durability for smart windows. ACS Applied Materials & Interfaces, 15(7), 9401-9411. 10.1021/acsami.2c21188.
  • [40]. Li, Z., Juneau, P., Lian, Y., Zhang, W., Wang, S., Wang, C., Shu, L., Yan, Q., He, Z., & Xu, K. (2020). Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants, 9(12), 1748. https://doi.org/10.3390/plants9121748 PMID:33321890
  • [41]. Liu, H., Weisman, D., Ye, Y B., Cui, B., Huang, Y H., Colon-Carmona, A., & Wang, Z. H. (2009). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 176(3), 375-382. https://doi.org/10.1016/j.plantsci.2008.12.002
  • [42]. Liu, Y., Wang, S., Wang, Z., Ye, N., Fang, H., & Wang, D. (2018). TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials (Basel, Switzerland), 8(2), 95. https://doi.org/10.3390/nano8020095 PMID:29419775
  • [43]. Ma, C., Taya, M., & Xu, C. (2008). Smart sunglasses based on electrochromic polymers. Polymer Engineering and Science, 48(11), 2224-2228. https://doi.org/10.1002/pen.21169
  • [44]. Malakar, A., Kanel, S. R., Ray, C., Snow, D. D., & Nadagouda, M. N. (2021). Nanomaterials in the environment, human exposure pathway, and health effects: A review. The Science of the Total Environment, 759, 143470. https://doi.org/10.1016/j.scitotenv.2020.143470 PMID:33248790
  • [45]. Matouke, M. M., Elewa, D. T., & Abdullahi, K. (2018). Binary effect of titanium dioxide nanoparticles (nTio2) and phosphorus on microalgae (Chlorella ‘Ellipsoides Gerneck, 1907). Aquatic Toxicology (Amsterdam, Netherlands), 198, 40-48. https://doi.org/10.1016/j.aquatox.2018.02.009 PMID:29501936
  • [46]. Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91 (3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
  • [47]. Melato, F. A., Regnier, T., McCrindle, R. I., & Mokgalaka, N. S. (2012). Impact of metals on secondary metabolites production and plant morphology in vetiver grass (Chrysopogon zizanioides). South African Journal of Chemistry. Suid-Afrikaanse Tydskrif vir Chemie, 65, 178-183.
  • [48]. Middepogu, A., Hou, J., Gao, X., & Lin, D. (2018). Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 161, 497-506. https://doi.org/10.1016/j.ecoenv.2018.06.027 PMID:29913418
  • [49]. Movafeghi, A., Khataee, A., Abedi, M., Tarrahi, R., Dadpour, M., & Vafaei, F. (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. Journal of Environmental Sciences (China), 64, 130-138. https://doi.org/10.1016/j.jes.2016.12.020 PMID:29478632
  • [50]. Movafeghi, A., Khataee, A., Rezaee, A., Kosari-Nasab, M., & Tarrahi, R. (2019). Toxicity of cadmium selenide nanoparticles on the green microalga Chlorella vulgaris : Inducing antioxidative defense response. Environmental Science and Pollution Research International, 26(36), 36380-36387. https://doi.org/10.1007/s11356-019-06675-w PMID:31713820
  • [51]. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  • [52]. Natalio, F., André, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7(8), 530-535. https:// doi.org/10.1038/nnano.2012.91 PMID:22751222
  • [53]. Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., Quigg, A., Santschi, P. H., & Sigg, L. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology (London, England), 17(5), 372-386. https://doi.org/10.1007/s10646-008-0214-0 PMID:18461442
  • [54]. Nazari, F., Movafeghi, A., Jafarirad, S., Kosari-Nasab, M., & Divband, B. (2018). Synthesis of reduced graphene oxidesilver nanocomposites and assessing their toxicity on the green microalga Chlorella vulgaris. BioNanoScience, 8(4), 997-1007. https://doi.org/10.1007/s12668-018-0561-0
  • [55]. Niu, J. S., Liu, I. P., Pan, Y L., Tsai, J. H., & Liu, W. C. (2021). Study of a formaldehyde gas sensor based on a sputtered vanadium pentoxide thin film decorated with gold nanoparticles. ECS Journal of Solid State Science and Technology : JSS, 10(8), 087001. https://doi.org/10.1149/2162-8777/ac1691
  • [56]. Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & van Staden, J. (2021). Biostimulants and the modulation of plant antioxidant systems and properties. In Biostimulants for Crops from Seed Germination to Plant Development ( 333-363). Academic Press., https://doi.org/10.1016/B978-0-12-823048-0.00008-3
  • [57]. Ozkaleli, M., & Erdem, A. (2018). Biotoxicity ofTiO2 nanoparticles on Raphidocelis subcapitata microalgae exemplified by membrane deformation. International Journal of Environmental Research and Public Health, 15(3), 416. https://doi.org/10.3390/ijerph15030416 PMID:29495534
  • [58]. Ozturk, B. Y., Asikkutlu, B., Akkoz, C., & Atic, T. (2019). Molecular and morphological characterization of several cyanobacteria and chlorophyta species isolated from lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19(8), 635-643. https://doi.org/10.4194/1303-2712-v19_8_01
  • [59]. Padash, A., Heydarnajad Giglou, R., Torabi Giglou, M., Azarmi, R., Mokhtari, A. M., Gohari, G., Amini, M., Cruz, C., & Ghorbanpour, M. (2023). Comparing the toxicity of tungsten and vanadium oxide nanoparticles on Spirulina platensis. Environmental Science and Pollution Research International, 30(15), 45067-45076. https://doi.org/10.1007/s11356-023-25461-3 PMID:36697989
  • [60]. Rai, M., & Biswas, J. K. (Eds) (2018). Nanomaterials: Ecotoxicity, safety, and public Perception. Cham, Switzerland: Springer International Publishing., 10.1007/978-3-030-05144-0
  • [61]. Saxena, P., Saharan, V., Baroliya, P. K., Gour, V. S., Rai, M. K., & Harish. (2021). Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicology Reports, 8, 724-731. https://doi.org/10.1016/j.toxrep.2021.03.023 PMID:33868956
  • [62]. Sieradzka, K., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Kiriakidis, G., Aperathitis, E., Kambilafka, V., Placido, F. & Song, S. (2011). Structural and optical properties of vanadium oxides prepared by microwave-assisted reactive magnetron sputtering. Optica Applicata, 41 (2), 463-469.
  • [63]. Suman, T. Y., Radhika Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23-30. https://doi.org/10.1016/j.ecoenv.2014.11.015 PMID:25483368
  • [64]. Walters, C. R., Pool, E. J., & Somerset, V. S. (2014). Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research. Journal of Environmental Science and Health. Part A, Toxic/ Hazardous Substances & Environmental Engineering, 49 (13), 1588-1601. https://doi.org/10.1080/10934529.2014.9385 36 PMID:25137546
  • [65]. Wang, F., Guan, W., Xu, L., Ding, Z., Ma, H., Ma, A., & Terry, N. (2019). Effects of nanoparticles on algae: Adsorption, distribution, ecotoxicity and fate. Applied Sciences (Basel, Switzerland), 9(8), 1534. https://doi.org/10.3390/ app9081534
  • [66]. Wei, X., Yu, J., Ding, L., Hu, J., & Jiang, W. (2017). Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds. Journal of Environmental Sciences (China), 57, 221-230. https://doi.org/10.1016/j.jes.2017.02.011 PMID:28647242
  • [67]. Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • [68]. Winterbourn, C. C., McGrath, B. M., & Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. The Biochemical Journal, 155(3), 493-502. https://doi.org/10.1042/bj1550493 PMID:182128
  • [69]. Wu, M., Zhang, X., Gao, S., Cheng, X., Rong, Z., Xu, Y., Zhao, H., & Huo, L. (2013). Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property. CrystEngComm, 15(46), 10123-10131. https://doi.org/10.1039/c3ce41471j
  • [70]. Xaaldi Kalhor, A., Movafeghi, A., Mohammadi-Nassab, A. D., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123(1-2), 286-290. https://doi.org/10.1016/j.marpolbul.2017.08.045 PMID:28844453
  • [71]. Xi, W. S., Song, Z. M., Chen, Z., Chen, N., Yan, G. H., Gao, Y., Cao, A., Liu, Y., & Wang, H. (2019). Short-term and long-term toxicological effects of vanadium dioxide nanoparticles on A549 cells. Environmental Science. Nano, 6(2), 565-579. https://doi.org/10.1039/C8EN00959G
  • [72]. Xi, W. S., Li, J. B., Liu, Y. Y., Wu, H., Cao, A., & Wang, H. (2021). Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following longterm exposure. Toxicology, 459, 152859. https://doi.org/10.1016/j.tox.2021.152859 PMID:34273449
  • [73]. Xia, B., Chen, B., Sun, X., Qu, K., Ma, F., & Du, M. (2015). Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. The Science of the Total Environment, 508, 525-533. https://doi.org/10.1016/j.scitotenv.2014.11.066 PMID:25483108
  • [74]. Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., & Li, P. (2020). Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Research Letters, 15(1), 115. https://doi.org/10.1186/s11671-020-03344-7 PMID:32436107
  • [75]. Yuan, S., Duan, X., Liu, J., Ye, Y., Lv, F., Liu, T., Wang, Q., & Zhang, X. (2021). Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 42, 317-369. https://doi.org/10.1016/j.ensm.2021.07.007
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4cf758c8-e1d0-4ffa-8f78-ff0edfd153b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.