PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of heavy haul railway tunnel lining based on ultimate bearing capacity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimization process of design parameters for composite lining of heavy haul railway tunnel is a key problem to be solved in tunnel engineering design. In order to put forward a better design scheme of composite lining for heavy haul railway tunnel, combined with field measurement and numerical simulation, the optimal working condition design is carried out by changing the thickness of shotcrete layer, the type of grid steel frame and the thickness of secondary lining. The influence of the above design parameters on the stress state of the composite lining is analyzed to obtain the optimal design parameters. Finally, the safety performance of the optimized lining is evaluated by the ultimate bearing capacity curve of the secondary lining section. The research shows that: 1) The optimal design parameters of the composite lining of the tunnel are the thickness of the shotcrete layer of 25 cm, the type of the grid steel frame of H180, the thickness of the secondary lining arch waist and the side wall of 40 cm and 35 cm respectively; 2) Different from the single-track heavy haul railway tunnel, the displacement value of the vault settlement of the double-track heavy haul railway tunnel is significantly greater than that of the inner convergence. Increasing the thickness of the shotcrete layer and changing the type of the grid steel frame have better effects on reducing the vault settlement, and have little effect on the inner convergence.
Rocznik
Strony
493--511
Opis fizyczny
Bibliogr. 18 poz., il., tab.
Twórcy
autor
  • Fujian Forestry Vocational and Technical College, Department of Traffic Engineering, Nanping, China
autor
  • Yangtze University, School of Urban Construction, Jingzhou, China
autor
  • China Railway Fourth Survey and Design Institute Group Co. Ltd., Wuhan, China
autor
  • Fujian Forestry Vocational and Technical College, Department of Traffic Engineering, Nanping, China
Bibliografia
  • [1] G. Sauer, V. Gall, E. Bauer, “Design of tunnel concrete linings using limit capacity cures”, presented at 8th International Conference on Computer Methods and Advances in Geomechanics, 22-28 May 1994.
  • [2] T. Kasper, C. Edvardsen, G. Wittneben, et al., “Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments”, Tunnelling and Underground Space Technology, 2008, vol. 23, no. 5, pp. 574-587; DOI: 10.1016/j.tust.2007.11.001.
  • [3] Y. Qiu, K. Feng, C. He, L. Zhang, et al., “Investigation of the ultimate bearing capacity of a staggered assembly segmental lining for an urban gas transmission tunnel”, Sustainable Cities and Society, 2019, vol. 48, pp. 1-13; DOI: 10.1016/j.scs.2019.101551.
  • [4] A.D. Mai, M.N. Sheikh, M.N.S. Hadi, “Failure envelopes of square and circularized RC columns discretely confined with CFRP”, Construction and Building Materials, 2020, vol. 261, pp. 1-11; DOI: 10.1016/j.conbuildmat.2020.119937.
  • [5] W.B. Ma, J.F. Chai, Z. Han, et al., “Research on design parameters and fatigue life of tunnel bottom structure of single-track ballasted heavy-haul railway tunnel with 40-ton axle load”, Mathematical Problems in Engineering, 2020, vol. 2020, pp. 1-9; DOI: 10.1155/2020/3181480.
  • [6] J. Pengfei, X. Zhang, X. Li, et al., “Optimization analysis of construction scheme for large-span highway tunnel under complex conditons”, Archives of Civil Engineering, 2018, vol. 64, no. 4/I, pp. 55-68; DOI: 10.2478/ace-2018-0044.
  • [7] A. Vanuvamalai, K.P. Jaya, “Design analysis of an underground tunnel in tamilnadu”, Archives of Civil Engineering, 2018, vol. 64, no. 1, pp. 21-39; DOI: 10.2478/ace-2018-0002.
  • [8] M. Ghaffari, S. Mahdevari, “The effect of tunnel geometry and geomechanical parameters of host rock on tunnel displacement profile”, Geotechnical and Geological Engineering, 2022, vol. 40, pp. 2799-2809; DOI: 10.1007/s10706-022-02063-3.
  • [9] K. Yertutanol, H. Akgun, E. Sopacı, “Displacement monitoring, displacement verification and stability assessment of the critical sections of the Konak tunnel, Izmir, Turkey”, Tunnelling and Underground Space Technology, 2020, vol. 101, art. ID 103357; DOI: 10.1016/j.tust.2020.103357.
  • [10] S.M. Gao, J.P. Chen, C.Q. Zuo, et al., “Structure optimization for the support system in soft rock tunnel based on numerical analysis and field monitoring”, Geotechnical and Geological Engineering, 2016, vol. 34, pp. 1089-1099; DOI: 10.1007/s10706-016-0029-3.
  • [11] Q. Jiang, S.G. Song, T. Li, et al., “Study on surrounding rock stability of small clear-distance twin highway tunnel with eight lanes”, Geotechnical and Geological Engineering, 2019 vol. 37, pp. 593-598; DOI: 10.1007/s10706-018-0629-1.
  • [12] S.O. Choi, H-S. Shin, “Stability analysis of a tunnel excavated in a weak rock mass and the optimal supporting system design”, International Journal of Rock Mechanics and Mining Sciences, 2004, vol. 41, pp. 876-881; DOI: 10.1016/j.ijrmms.2004.03.151.
  • [13] H.H.A. Rahim, M. Enieb, A.A. Khalil, et al., “Twin tunnel configuration for Greater Cairo metro line No. 4”, Computer and Geotechnics, 2015, vol. 68, pp. 66-77; DOI: 10.1016/j.compgeo.2015.03.015.
  • [14] H.F. Qu, H.H. Zhu, C.Z. Huang, et al., “Study on selection of section-steel and grid-steel in prmiary support system of tunnel”, Chinese Journal of Underground Space and Engineering, 2007, vol. 3, no. 2, pp. 258-262; DOI: 10.3969/j.issn.1673-0836.2007.02.015.
  • [15] J. Wang, E. Li, L. Chen, et al., “Measurement and analysis of the internal displacement and spatial effect due to tunnel excavation in hard rock”, Tunnelling and Underground Space Technology, 2019, vol. 84, pp. 151-165; DOI: 10.1016/j.tust.2018.11.001.
  • [16] G.S. Zeng, H.N. Wang, M.J. Jiang, et al., “Analytical solution of displacement and stress induced by the sequential excavation of noncircular tunnels in viscoelastic rock”, International Journal of Rock Mechanics and Mining Sciences, 2020, vol. 134; DOI: 10.1016/j.ijrmms.2020.104429.
  • [17] J.S. Zhang, Y.Z. Qi, “Research on the intelligent positioning method of tunnel excavation face”, Archives of Civil Engineering, 2022, vol. 68, no. 1, pp. 431-441; DOI: 10.24425/ace.2022.140178.
  • [18] G. Leonardi, R. Palamara, F. Suraci, “3D Finite element model of a blast load in a tunnel”, Archives of Civil Engineering, 2021, vol. 67, no 4, pp. 91-105; DOI: 10.24425/ace.2021.138488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c51fb07-07c0-4e84-aaa6-76831f31a738
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.