PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the melting, burning and flame spread of polymers with the particle finite element method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A computational procedure for analysis of the melting, burning and flame spread of polymers under fire conditions is presented. The method, termed particle finite element method (PFEM), combines concepts from particle-based techniques with those of the standard finite element method (FEM). The key feature of the PFEM is the use of an updated Lagrangian description to model the motion of nodes (particles) in the thermoplastic material. Nodes are viewed as material points which can freely move and even separate from the main analysis domain representing, for instance, the effect of melting and dripping of polymer particles. A mesh connects the nodes defining the discretized domain where the governing equations are solved using the FEM. An incremental iterative scheme for the solution of the nonlinear transient coupled thermal-flow problem, including radiation, loss of mass by gasification and combustion is used. Examples of the possibilities of the PFEM for the modelling and simulation of the melting, burning and flame spread of polymers under different fire conditions are described.
Rocznik
Strony
165--184
Opis fizyczny
Bibliogr. 31 poz., il., rys., tab., wykr.
Twórcy
autor
  • Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
  • Universitat Politècnica de Catalunya (UPC) Gran Capitán s/n, 08034 Barcelona, Spain
autor
  • Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
  • Universitat Politècnica de Catalunya (UPC) Gran Capitán s/n, 08034 Barcelona, Spain
autor
  • Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
autor
  • Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
  • Universitat Politècnica de Catalunya (UPC) Gran Capitán s/n, 08034 Barcelona, Spain
  • Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE)
  • ICREA Research Professor at CIMNE
Bibliografia
  • [1] J. Zhang, T.J. Shields, G.W.H. Silcock. Effect of melting behaviour on flame spread of thermoplastics. Fire & Materials, 21 (1): 1–6, 1997.
  • [2] C.M. Fleischmann, G.R. Hill. Burning behaviour of upholstered furniture. Interflam, 907–916, 2004.
  • [3] J. Sherratt, D. Drysdale. The effect of the melt-flow process on the fire behaviour of thermoplastics. Interflam, 149–159, 2001.
  • [4] K.M. Butler, T.J. Ohlemiller, G.T. Linteris. A progress report on numerical modeling of experimental polymer melt flow behavior. Interflam, 937–948, 2004.
  • [5] S.R. Idelsohn, E. Oñate, N. Calvo, F. Del Pin. The meshless finite element method. International Journal for Numerical Methods in Engineering, 58 (6): 893–912, 2003.
  • [6] S.R. Idelsohn, E. Oñate, F. Del Pin. The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering, 61 : 964–989, 2004.
  • [7] E. Oñate, S.R. Idelsohn, F. Del Pin, R. Aubry. The particle finite element method. An overview. International Journal of Computational Methods, 1 (2): 267–307, 2004.
  • [8] R. Aubry, S.R. Idelsohn, E. Oñate. Particle finite element method in fluid-mechanics including thermal convection-diffusion. Computers and Structures, 83 (17–18): 1459–1475, 2005.
  • [9] R. Aubry, S.R. Idelsohn, E. Oñate. Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Computational Mechanics, 38 (4–5): 294–309, 2006.
  • [10] E. Oñate, S.R. Idelsohn, M.A. Celigueta, R. Rossi. Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Computer Methods in Applied Mechanics and Engineering, 197 (19–20): 1777–1800, 2008.
  • [11] E. Oñate, M.A. Celigueta, S.R. Idelsohn. Possibilities of the particle finite element method for fluidsoilstructure interaction problems. Computational Mechanics, 48 (3): 307–318, 2011.
  • [12] E. Oñate, A. Franci, J.M. Carbonell. A FIC-based stabilized Lagrangian formulation with negligible mass losses for incompressible fluids. Application to free-surface flows using PFEM. Publication CIMNE, No. PI394, 2013. Submitted to Int. J. Num. Meth. Fluids
  • [13] S.R. Idelsohn, M. Mier-Torrecilla, E. Oñate. Multi-fluid flows with the Particle Finite Element Method. Comput. Methods Appl. Mech. Engrg., 198 : 2750–2767, 2009.
  • [14] K.M. Butler, E. Oñate, S.R. Idelsohn, R. Rossi. Modeling polymer melt flow using the particle finite element method. 11th International Interflam Conference ( Interflam’07 ), London, England, Volume 2, 929–940, September 3–5, 2007.
  • [15] R. Rossi, K.M. Butler, E. Oñate, S.R. Idelsohn. Modeling polymer melt flow using the Particle Finite Element Method. Advanced Research Workshop on Fire Computer Modeling, Gijón, Spain, October 18–20, 2007.
  • [16] E. Oñate, R. Rossi, S.R. Idelsohn, K. Butler. Melting and spread of polymers in fire with the particle finite element method. Int. J. Numer. Meth. Engng., 81 (8): 1046–1072, 2010.
  • [17] J. Marti, P. Ryzhakov, S.R. Idelsohn, E. Oñate. Combined Eulerian-PFEM approach for analysis of polymers in fire situations. Int. J. Numer. Meth. Engng., 92 : 782–801, 2012.
  • [18] F. Kempel, B. Schartel, J.M. Marti, K.M. Butler, R. Rossi, S.R. Idelsohn, E. Oñate, A. Hofmann. Modelling the vertical UL 94 test: Competition and collaboration between melt dripping, gasification and combustion. Submitted to Fire and Material, 2012.
  • [19] O.C. Zienkiewicz, R.L. Taylor, N. Nithiarasu The Finite Element Method. Vol. 3 Fluid Mechanics, Elsevier, 2005.
  • [20] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method. Vol. 2 Solid Structural Mechanics, Elsevier, 2005.
  • [21] H. Edelsbrunner, E.P. Mucke. Three-dimensional alpha shapes. ACM Trans. Graphics, 13 : 43–72, 1999.
  • [22] O.C. Zienkiewicz, P.C. Jain, E. Oñate. Flow of solids during forming and extrusion: Some aspects of numerical solutions. International Journal of Solids and Structures, 14 : 15–38, 1978.
  • [23] O.C. Zienkiewicz, E. Oñate, J.C. Heinrich. A general formulation for the coupled thermal flow of metals using finite elements. International Journal for Numerical Methods in Engineering, 17 : 1497–1514, 1981.
  • [24] E. Oñate. Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems. Computer Methods in Applied Mechanics and Engineering, 151 : 233–265, 1998.
  • [25] E. Oñate. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Computer Methods in Applied Mechanics and Engineering, 182 (3–4): 355–370, 2000.
  • [26] E. Oñate. Possibilities of finite calculus in computational mechanics. International Journal for Numerical Methods in Engineering, 60 (1): 255–281, 2004.
  • [27] M.F. Modest. Radiative heat transfer. Academic Press, 2003.
  • [28] K.D. Lathrop, B.G. Carlson. Discrete-ordinates angular quadrature of the neutron transport equation. Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory, 1965.
  • [29] P. Dadvand, R. Rossi, E. Oñate. An object-oriented environment for developing finite element codes for multi-disciplinary applications. Archives of Computational Methods in Engineering, 17 : 253–297, 2010.
  • [30] K.M. Butler. A model of melting and dripping thermoplastic objects in fire. Fire and Materials 2009, San Francisco, USA, 341–352, January 26–28, 2009.
  • [31] T.J. Ohlemiller, J.R. Shields. Aspects of the fire behavior of thermoplastic materials. NIST Technical Note 1493, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c09bd34-75e7-4e1e-b317-03fb274432fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.