PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of tensile properties of the TiAl6V4 alloy due to the prior cyclic loading history

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the initial fatigue loading on tensile characteristics of the TiAl6V4 titanium alloy is presented in this work. For cumulative fatigue damage equal to 0.75, a decrease in the pre-fatigue amplitude leads to a lowering in the elongation. Moreover, independent of the amplitude, the loading induces an increase in the yield stress by approximately 100MPa. An increase in the number of pre-fatigue cycles at a constant amplitude results in a decrease in the elongation. Such mechanical behaviour is related to the cyclic hardening effect and the development of fatigue damage, which clearly affects the tensile characteristics of the alloy.
Słowa kluczowe
Rocznik
Strony
847--851
Opis fizyczny
Bibliogr. 12 poz., rys., tab.
Twórcy
autor
  • Motor Transport Institute, Warsaw, Poland and Institute of Fundamental Technological Research, Warsaw, Poland
  • Motor Transport Institute, Warsaw, Poland and Institute of Fundamental Technological Research, Warsaw, Poland
Bibliografia
  • 1. Fatemi A., Yang L., 1998, Cumulative fatigue damage and life prediction theories: a survey of the state of art for homogeneous materials, International Journal of Fatigue, 20, 9-34
  • 2. Froustey C., Lataillade J.L., 2009, Influence of the microstructure of aluminium alloys on their residual impact properties after a fatigue loading program, Materials Science and Engineering: A, 500, 155-163
  • 3. Itabashi M., Koseki H., 2013, Mechanical characterization of pre-fatigued free-cutting steels under dynamic tension, Engineering Transactions, 61, 87-98
  • 4. Miner M.A., 1945, Cumulative damage in fatigue, Journal of Applied Mechanics, 67A, 159-164
  • 5. Moćko W., 2014, The influence of stress-controlled tensile fatigue loading on the stress-strain characteristics of AISI 1045 steel, Materials and Design, 58, 145-153
  • 6. Moćko W., Kowalewski Z.L., 2011, Dynamic compression tests – current achievements and future development, Engineering Transactions, 59, 235-248
  • 7. Moćko W., Kowalewski Z.L., 2011, Development and validation of FEM model of miniaturized Direct Impact Compression Testing stand (in Polish), Transport Samochodowy, 32, 97-105
  • 8. Moćko W., Rodriguez-Martinez J.A., Kowalewski Z.L., Rusinek A., 2012, Compressive viscoplastic response of 6082-T6 and 7075-T6 aluminium alloys under wide range of strain rate at room temperature: experiments and modelling, Strain, 48, 498-509
  • 9. Paul S.K., Sivaprasada S., Dhar S., Tarafder S., 2010, True stress control asymmetric cyclic plastic behavior in SA333 CeMn steel, International Journal of Pressure Vessels and Piping, 87, 440-446
  • 10. Sánchez-Santana U., Rubio-González C., Mesmacque G., Amrouche A., Decoopman X., 2008, Effect of fatigue damage induced by cyclic plasticity on the dynamic tensile behavior of materials, International Journal of Fatigue, 30, 1708-1719
  • 11. Socha G., 2003, Experimental investigations of fatigue cracks nucleation, growth and coalescence in structural steel, International Journal of Fatigue, 25, 139-147
  • 12. Socha G., 2004, Prediction of the fatigue life on the basis of damage progress rate curves, International Journal of Fatigue, 26, 339-347
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bdd7117-d15b-4063-ad94-d7bf87c3fe38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.