Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of the paper is to illustrate the usage of techniques known from chaos theory to analyze the risk Design/methodology/approach: In this case the objects of application are winnings graphs of different poker players. Two types of players are presented; winning players (those with positive expected value) and breaking even players (expected value close to zero). Findings: Charts were analyzed with a fractal dimension calculated with the box method. Originality/value: Relation between fractal dimension and Hurst exponent is shown. Relation between risk in sense of chaos theory and players’ long-term winning is also described. Further applications of chaos theory to analyze the risk in games of chance are also proposed.
Rocznik
Tom
Strony
195--211
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Wroclaw University of Science and Technology, Faculty of Computer Science and Management, Wrocław
autor
- Wroclaw University of Science and Technology, Faculty of Computer Science and Management, Wrocław
autor
- Wroclaw University of Science and Technology, Faculty of Mechanics, Wrocław
autor
- Wroclaw University of Science and Technology, Faculty of Computer Science and Management, Wrocław
Bibliografia
- 1. Adobe Creative Team (2005). Adobe Photoshop CS Classroom in a Book, Adobe Press.
- 2. Alejandrino, I. (2011). Butterfly Effects – Variations on a Meme. clearnightsky.com, 20.10.2018.
- 3. Become a successful poker player today. Available online http://www.pokerstrategy.com, 05.11.2019
- 4. Falconer, K. (2003). Fractal Geometry: Mathematical Foundations and Applications. West Sussex: John Wiley & Sons.
- 5. Forum Two Plus Two. Available online http://forumserver.twoplustwo.com, 09.11.2019.
- 6. Fractalyse – Fractal Analysis Software. Available online http://www.fractalyse.org, 09.11.2019.
- 7. Kalnay, E. (2003). Atmospheric Modelling, Data Assimilation and Predictability. Cambridge: Cambridge University Press.
- 8. Kudrewicz, J. (2007). Fraktale i chaos. Warszawa: WNT.
- 9. Lorenz, E.N. (1963). Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, 20, p. 130-141.
- 10. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. New York: W.H. Freeman and Co.
- 11. Markowitz, H.M. (1952). Portfolio Selection. The Journal of Finance, 7, p. 77-91.
- 12. Peters, E. (1994). Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. West Sussex: John Wiley & Sons.
- 13. Poker tracker. Available online http://www.pokertracker.com, 09.11.2019.
- 14. Rules for Poker All-In Situations. Poker Side Pot Calculator. Available online http://www.learn-texas-holdem.com, 09.11.2019.
- 15. Salim, M., Rohwer P. (2005). Poker Opponent Modelling, Computer Science Department Indiana University.
- 16. Sklansky, D. (2005). The Theory of Poker. Las Vegas.
- 17. Sutherland, S. (2002). Fractal Dimension. Retrieved from http://www.math.sunysb.edu, 08.11.2019.
- 18. Ustawa z dnia 19 listopada 2009 r. o grach hazardowych, Dziennik Ustaw (2009).
- 19. Weisstein, E.W. (2018). Geometric Sequence. Retrieved from http://mathworld. wolfram.com, 05.11.2018.
- 20. Weisstein, E.W. (2019). Arithmetic Progression. Retrieved from http://mathworld. wolfram.com, 08.09.2019
- 21. Weisstein, E.W. (2019). Minkowski-Bouligand Dimension. Retrieved from http://mathworld.wolfram.com, 08.11.2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a8ae3ff-2b95-4fa5-beac-9914a2cb78ae