PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of in vitro corrosion on the mechanical properties of metallic high strength biodegradable surgical threads

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High strength biodegradable surgical threads are in demand for surgical practice. Nowadays, such threads can be made of metallic materials such as magnesium, zinc or alloys based on these metals. In current paper, manufacturing technology of biodegradable surgical threads of Mg–Ca alloys and of pure Zn was developed and basic properties of the obtained product have been characterized. The influence of in vitro corrosion in bovine serum simulating environment in the mammal’s body on the surgical threads mechanical properties was determined. It was found that Zn and hot extruded alloys MgCa0.9 and MgCa1.2 can be recommended as a candidate for the future study in vivo. Properties of the room temperature drawn wires of the alloy MgCa0.7 are not sufficient for its application as surgical threads.
Rocznik
Strony
437--452
Opis fizyczny
Bibliogr. 77 poz., fot., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30‑059 Krakow, Poland
  • Lukasiewicz Research Network - Metal Forming Institute, 14 Jana Pawla II St., 61‑139 Poznan, Poland
  • Lukasiewicz Research Network - Metal Forming Institute, 14 Jana Pawla II St., 61‑139 Poznan, Poland
  • Light Metals Division, Lukasiewicz Research Network - Institute of Non-Ferrous Metals, ul. Pilsudskiego 19, 32‑050 Skawina, Poland
Bibliografia
  • [1] Ress A. The cyclopedia or universal dictionary of arts, sciences, and literature, vol. XXXIV. London: Longman, Hurst, Rees, Orme & Brown; 1918.
  • [2] https ://medic al-dicti onary .thefr eedic tiona ry.com/ligat ure.Accessed 2 Dec 2019.
  • [3] Saber A. Ancient Egyptian surgical heritage. J Investig Surg. 2010. https ://doi.org/10.3109/08941 939.2010.51528 9.
  • [4] Dobanovicki D, Milovanovic L, Slavkovic A, Tatic, MIskovic SS, Skoric-Jokic S, Pecanac M. Surgery before common era (B.C.E). Arch Oncol. 2012. https ://doi.org/10.2298/aoo12 02028 d.
  • [5] Levine H. Stitch in time: 18 fascinating facts about the history of sutures. New Brunswick: Jonson & Jonson Co.; 2016.
  • [6] https ://www.jnj.com/our-herit age/histo ry-of-sutur es-ethic on. Accessed 2 Dec 2019.
  • [7] Snelling N. The history of the suture, from ancient Egypt to Nobel Prizes: delve into the history of stitches. Medibank. 2015. https ://www.medib ank.com.au/liveb etter /be-magaz ine/wellbeing/the-histo ry-of-the-sutur e/. Accessed 2 Dec 2019.
  • [8] Cutajar L. Sutures and ligatures in surgery. St. Luke’s Hosp Gazette. 1957;10:51–3.
  • [9] Muffly TM, Tizzano AP, Walters MD. The history and evolution of sutures in pelvic surgery. J R Soc Med. 2011. https ://doi.org/10.1258/jrsm.2010.10024 3.
  • [10] General specifications of surgical stitching materials. Katsan Surgical Sutures. KatsanKatgutSanayyve Tic A/S. 2019. https ://katsa nas.com/gener al-speci ficat ions-of-surgi cal-stitc hing-materials. Accessed 2 Dec 2019.
  • [11] Surgical needles. SERAG-WIESSNER GmbH & Co. https ://www.serag -wiess ner.de/en/produ cts/surgi cal-needl es/. Accessed 2 Dec 2019.
  • [12] Horse hair sutures. Willis–Knighton Talbot Medical Museum. https ://museu m.wkhs.com/colle ction s/onlin e-colle ction s/details/horse -hair-sutur es. Accessed 2 Dec 2019.
  • [13] Kronemyer B. Human hair to suture facia wounds? The aesthetic channel. 2017. https ://www.aesth eticc hanne l.com/cosmetic-surge ry/human -hair-sutur e-facia l-wound s. Accessed 2 Dec 2019.
  • [14] Holder EJ, Pharm B. The story of catgut. Postgrad Med J. 1949;25:427–33.
  • [15] Goldstain JH, Clahane AC, Bedrossian PB, Copeland RL. Comparison of catgut and collagen sutures in strabismus surgery. Am J Ophthalmol. 1971;71:935–9.
  • [16] Thilagavathi G, Viju S. Silk as a suture material. In: Basu A, editor. Ch. 11 in Advances in silk science and technology, 1st edn. Woodhead Publishing Series in Textiles; 2015. p. 219–32.
  • [17] Babcock WW. Metallic sutures and ligatures. Surg Clin N Am. 1947;27:61435–60.
  • [18] Barrows T. Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater. 1986;1:233–57.
  • [19] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46.
  • [20] Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials. 2000;21:2615–21.
  • [21] Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater. 2015. https ://doi.org/10.1002/adhm.201500189.
  • [22] Anderson JM, Shive MS. Biodegradation and biocompatibility of pLa and pLGa microspheres. Adv Drug Deliv Rev. 2012;64:72–82.
  • [23] Bergsma EJ, Rozema FR, Bos RR, De Bruijn WC. Foreign body reactions to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51:666–70.
  • [24] Daniels AU, Chang MK, Andriano KP, Heller J. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater. 1990. https ://doi.org/10.1002/jab.77001 0109.
  • [25] Marques DR, dos Santos LA, Schopf LF, de Fraga JCS. Analysis of poly(lactic-co-glycolic acid)/poly(isoprene) polymeric blend for application as biomaterial. Polímeros. 2013. https ://doi.org/10.4322/polim eros.2013.099.
  • [26] Meyle J. Suture material and suture techniques. Perio Periodontal Pract Today. 2006;3:253–68.
  • [27] Morreale M, Mistretta MCh, Fiore V. Creep behavior of poly(lactic acid) based biocomposites. Materials. 2017. https ://doi.org/10.3390/ma100 40395 .
  • [28] Edlich RF, Drake BD, Rodeheaver GT, Winters KL, Greene JA, Gubler KD 3rd, Long WB, Britt LD, Winters SP, Scott CC, Lin KY. Syneture stainless steel suture. A collective review of its performance in surgical wound closure. J Long Term Eff Med Implants. 2006;16(1):101–10.
  • [29] Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magnes Alloys. 2017;5:286–312.
  • [30] Fekry AM. Electrochemical corrosion behavior of magnesium alloys in biological solutions. In: Czerwiński F, editor. Ch. 5 in Magnesium alloys-corrosion and surface treatments. InTech Publ.; 2011. p. 65–92; ISBN 978-953-307-972-1.
  • [31] Zhang S, Zhang X, Zhao Ch, Li J, Song Y, Xie Ch, Tao H, Zhang Y, He Y, Jiang Y, Bian Y. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626–40.
  • [32] Jamesh M, Kumar S, Narayanan TSNS. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution-long term evaluation by EIS. Corros Sci. 2011;53:645–54.
  • [33] Zhang BP, Wang Y, Geng L. Research on Mg–Zn-Ca alloy as degradable biomaterial. In: Pignatello R, editor. Ch. 9 in biomaterials-physics and chemistry. In Tech Publ. ; 2011. pp. 183–204; ISBN 978-953-307-418-4.
  • [34] Chiu KY, Wong MH, Cheng FT, Man HC. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf Coat Technol. 2007. https ://doi.org/10.1016/j.surfcoat.2007.06.035.
  • [35] Waizy H, Weizbauer A, Modrejewski Ch, Witte F, Windhagen H, Lucas A, Kieke M, Denkena B, Behrens P, Meyer-Lindenberg A, Bach FW, Thorey F. In vitro corrosion of ZEK100 plates in Hank’s balanced salt solution. Biomed Eng. 2012. https ://doi.org/10.1186/1475-925X-11-12.
  • [36] Levy GK, Goldman J, Aghion E. The prospects of zinc as a structural material for biodegradable implants-a review paper. Metals. 2017. https ://doi.org/10.3390/met71 00402 .
  • [37] Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart. 2001. https ://doi.org/10.1136/heart .86.5.563.
  • [38] Seitz JM, Utermöhlen D, Wulf E, Klose C, Bach FW. The manufacture of resorbable suture material from magnesium. Adv Eng Mater. 2011;13:1087–95.
  • [39] Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63–72.
  • [40] Seitz JM, Eifler R, Stahl J, Kietzmann M, Bach FW. Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices. Acta Biomater. 2012;8:3852–64.
  • [41] Grote KH, Antonsson EK. Springer handbook of mechanical engineering. New York: Springer; 2009.
  • [42] Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010. https ://doi.org/10.1016/j.actbio.2009.07.039.
  • [43] Porter F. Zinc handbook: properties, processing, and use in design. New York: M. Dekker; 1991.
  • [44] Vojtech D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011. https ://doi.org/10.1016/j.actbio.2011.05.008.
  • [45] Milenin A, Kustra P, Wróbel M, Paćko M, Byrska-Wójcik DJ. Comparison of the stress relaxation of biodegradable surgical threads made of Mg and Zn alloys and some commercial synthetic materials. Arch Metall. 2019. https ://doi.org/10.24425 /amm.2019.12950 6.
  • [46] Yuan W, Li B, Chen D, Zhu D, Han Y, Zhen Y. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc. ACS Biomater Sci Eng. 2019;5:487–97.
  • [47] Drelich AJ, Zhao S, Guillory RJ, Drelich JW, Goldman J. Longterm surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomater. 2017;58:539–49.
  • [48] Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010. https ://doi.org/10.1016/j.actbio.2010.02.028.
  • [49] Lambotte A. Technique et indications de prothčse perdue dans la traitement des fractures. Press Med Belge. 1909;17:321–3.
  • [50] Verbrugge J. Le matériel métallique résorbable en chirurgie osseuse. La Press Medicale. 1934;3:460–5.
  • [51] Zakiyuddin A, Lee K. Effect of a small addition of zinc and manganese to Mg–Ca based alloys on degradation behavior in physiological media. J Alloys Compd. 2015;629:274–83.
  • [52] Wan Y, Xiong G, Luo H, He F, Huang Y, Zhou X. Preparation and characterization of a new biomedical magnesium–calcium alloy. Mater Des. 2008. https ://doi.org/10.1016/j.matde s.2008.04.017.
  • [53] Milenin A, Kustra P, Byrska-Wójcik D, Grydin O, Schaper M, Mentlein T, Gerstein G, Nürnberger F. Analysis of microstructure and damage evolution in ultra-thin wires of the magnesium alloy MgCa0.8 at multipass drawing. JOM. 2016;68(12):3063–9.
  • [54] Kustra P, Milenin A, Byrska-Wójcik D, Grydin O, Schaper M. The process of ultra-fine wire drawing for magnesium alloy with the guaranteed restoration of ductility between passes. J Mater Process Technol. 2017;247:234–42.
  • [55] https ://www.biowe st.net. Accessed 2 Dec 2019.
  • [56] Chu CC. Mechanical properties of suture materials, an important characterization. Ann Surg. 1981;93(3):365–71.
  • [57] Williamson GK, Hall WH. X-ray line broadening from filed aluminum and wolfram. Acta Met. 1953;1:22–31.
  • [58] Mezbahul-Islam M, Mostafa AO, Medraj M. Essential magnesium alloys binary phase diagrams and their thermochemical data, review article. J Mater. 2014. https ://doi.org/10.1155/2014/704283.
  • [59] Aljarrah M, Medraj M. Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model. Comput Coupling Phase Diagr Thermochem. 2008;2:240–51.
  • [60] Zhong Y. Investigation in Mg–Al–Ca–Sr–Zn system by computational thermodynamics approach coupled with first-principles energetics and experiments, PhD Thseis, Avedesian: The Pensylvania State University; 2005.
  • [61] Baker MM. ASM specialty handbook, magnesium and magnesium alloys. Materials Park: ASM International; 1999.
  • [62] Liu CL, Wang YJ, Zeng RC, Zhang XM, Huang WJ, Chu PK. In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corros Sci. 2010;52:3341–7.
  • [63] Dryzek J, Wróbel M, Dryzek E. Recrystallization in severely deformed Ag, Au, and Fe studied by positron–annihilation and XRD methods. Phys Status Solidi B. 2016;253:2031–42.
  • [64] Dryzek J, Wróbel M. Observation of the recrystallization process in pure Nb and Zr using positron lifetime pectroscopy and XRD techniques. Phys Status Solidi B. 2018;225:1–7.
  • [65] Carlson BE, Jones JW. The metallurgical aspects of the corrosion behaviour of cast Mg–Al alloys. In: CIM conference, light metals processing and applications. Quebec; 1993. P. 833–47.
  • [66] Govind Nair KS, Mittal MC, Lal K, Mahanti RK, Sivaramakrishnan CS. Development of rapidly solidified (RS) magnesium–aluminium–zinc alloy. Mater Sci Eng. 2001;304:520–3.
  • [67] Aung N, Zhou W. Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy. J Appl Electrochem. 2002;32:1397–401.
  • [68] Malteseva A, Shkirskiy V, Lefčvre G, Volovitch P. Effect of pH on Mg(OH)2 film evolution on corroding Mg by in situ kinetic Raman mapping (KRM). Corros Sci. 2019;153:272–82.
  • [69] Gu XN, Zheng YF, Chen LJ. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg–Ca, AZ31, AZ91 alloys. Biomed Mater. 2009. https ://doi.org/10.1088/1748-6041/4/6/06501 1.
  • [70] Borgmann CW, Evans UR. The corrosion of zincin chloride solutions. J Electrochem Soc. 1934;65(1):249–74.
  • [71] Törne K, Larsson M, Norlin A, Weissenrieder J. Degradation of zinc in saline solutions, plasma, and whole blood. J Biomed Mater Res B. 2016. https ://doi.org/10.1002/jbm.b.33458 .
  • [72] Liu X, Yang H, Liu Y, Xiong P, Guo H, Huang HH, Zheng Y. Comparative studies on degradation behavior of pure zinc in various simulate body fluids. JOM. 2019. https ://doi.org/10.1007/s1183 7-019-03357 -3.
  • [73] Meng Y, Liu L, Zhang D, Dong Ch, Yan Y, Volinsky AA, Wang LN. Initial formation of corrosion products on pure zinc in saline solution. Bioact Mater. 2019;4:87–96.
  • [74] Thomas S, Birbills N, Venkatraman MS, Cole IS. Corrosion of zinc as a function of pH. Corrosion. 2012. https ://doi.org/10.5006/1.36766 30.
  • [75] Lindstom R, Johansson L, Thompson G, Skeldon P, Svensson J. Corrosion of magnesium in humid air. Corros Sci. 2004;46:1141–58.
  • [76] Hu H, Nie X, Ma Y. Corrosion and surface treatment of magnesium alloys. In: Czerwinski F, editor. Ch. 3 in magnesium alloysproperties in solid and liquid states. London: Intech Published; 2014. p. 67–108.
  • [77] Li Z, Gu X, Lou S, Zheng Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008. https ://doi.org/10.1016/j.bioma teria ls.2007.12.021.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-498cd3a5-6ffb-4d0a-93ee-65887510a5e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.