PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multifaceted approach to assessing intermodal transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the issues of land intermodal transport, taking into account their impact on the natural environment. The subject of the research is the use of the ELECTRE I method as a decision support tool in the assessment of various variants of transport, taking into account intermodal transport, i.e., transport on the initial and final sections of the route with the use of road transport and transport in the middle longest section by rail transport. This significantly reduces the emission of harmful compounds emitted into the atmosphere by the transport industry. In connection with the above, research on the possibility of choosing transport routes using mixed modes of land transport has been presented. The analyzed transport from point A to destination B considers two reloading operations at the land intermodal terminals. For each of the variants, indicators related to emissions from fuel consumption, the total time and cost of the process, the share of rail transport in the entire process, and the distance of road transport were calculated. The final analysis of the results shows that the following parameters had the most significant impact on the course of the research: the level of carbon dioxide emissions into the atmosphere and the total cost of the process for a given variant. Based on the conducted research, it can be concluded that the variant of transporting cargo from Rybnik to Świdnik with reloading at the PCC Intermodal terminals in Gliwice and the Lublin Container Terminal turned out to be the most advantageous solution.
Rocznik
Tom
Strony
141--165
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Faculty of Transport, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland
  • Faculty of Transport, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland
  • Faculty of Transport, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland
  • Faculty of Transport, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland
Bibliografia
  • 1. Akram M., F. Ilyas, H. Garg. 2020. “Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information”. Soft Computing 24: 3425-3453. DOI: https://doi.org/10.1007/s00500-019-04105-0.
  • 2. Akram M., A. Luqman, J.C.R. Alcantud. 2022. “An integrated ELECTRE-I approach for risk evaluation with hesitant Pythagorean fuzzy information”. Expert Systems with Applications 200: 116945. DOI: https://doi.org/10.1016/j.eswa.2022.116945.
  • 3. Ambrosino D., V. Asta, T.G. Crainic. 2021. “Optimization challenges and literature overview in the intermodal rail-sea terminal”. Transportation Research Procedia 52: 163-170. DOI: https://doi.org/10.1016/j.trpro.2021.01.089.
  • 4. Bergqvist R., J. Monios. 2016. “Inbound logistics, the last mile and intermodal high capacity transport”. World Review of Intermodal Transport Research 6(1): 74-92. DOI: https://doi.org/10.1504/WRITR.2016.078157.
  • 5. Beškovnik B., M. Golnar. 2020. “Evaluating the environmental impact of complex intermodal transport chains”. Environmental Engineering and Management Journal 19(7): 1131-1141.
  • 6. Boysen N., M. Fliedner. 2010. “Determining crane areas in intermodal transshipment yards: The yard partition problem”. European Journal of Operational Research 204(2): 336-342. DOI: https://doi.org/10.1016/j.ejor.2009.10.031;
  • 7. Boysen N., M. Fliedner, F. Jaehn, E. Pesch. 2012. “A Survey on Container Processing in Railway Yards”. Transportation Science 47(3): 294-454. DOI: https://doi.org/10.1287/trsc.1120.0415.
  • 8. Bruns F., S. Knust. 2012. “Optimized load planning of trains in intermodal transportation”. OR Spectrum 34(3): 511-533.
  • 9. Cieśla M., A. Sobota, M. Jacyna. 2020. “Multi-Criteria decision making process in metropolitan transport means selection based on the sharing mobility idea”. Sustainability 12(17): 7231. DOI: https://doi.org/10.3390/su12177231.
  • 10. Čižiūnienė K., G. Bureika, J. Matijošius. 2022. “Challenges for Intermodal Transport in the Twenty-First Century: Reduction of Environmental Impact Due the Integration of Green Transport Modes”. Modern Trends and Research in Intermodal Transportation 400: 307-354. DOI: https://doi.org/10.1007/978-3-030-87120-8_6.
  • 11. Danilevičius A., M. Karpenko, V. Křivánek. 2023. “Research on the noise pollution from different vehicle categories in the urban area”. Transport 38(1): 1-11. DOI: https://doi.org/10.3846/transport.2023.18666.
  • 12. Dărăbanț S., P. Ștefănescu, R. Crișan. 2012. „Economic benefits of developing intermodal transport in the European Union”. Annals of the University of Oradea Economic Science Series 21(2): 81-87.
  • 13. Ge J., W. Shi, X. Wang. 2020. “Policy Agenda for Sustainable Intermodal Transport in China: An Application of the Multiple Streams Framework”. Sustainability 12(9): 3915. DOI: https://doi.org/10.3390/su12093915.
  • 14. Gnap J., Š. Senko, M. Drličiak, M. Kostrzewski. 2021. „Modeling of time availability of intermodal terminals”. Transportation Research Procedia 55: 442-449. DOI: https://doi.org/10.1016/j.trpro.2021.07.007.
  • 15. Gołębiowski P., M. Jacyna, J. Żak. 2019. „Multi-criteria method of selection the way of conducting railway traffic on the open line for modernized and revitalized railway lines”. MATEC Web of Conferences 294: 1-7. DOI: https://doi.org/10.1051/matecconf/201929404015.
  • 16. Hamurcu M., T. Eren. 2022. “Applications of the MOORA and TOPSIS methods for decision of electric vehicles in public transportation technology”. Transport 37(4): 251-263. DOI: https://doi.org/10.3846/transport.2022.17783.
  • 17. Heggen H., K. Breakers, A. Caris. 2018. “Multi-objective approach for intermodal train load planning”. OR Spectrum 40(2): 341-366. DOI: https://doi.org/10.1007/s00291-017-0503-1.
  • 18. International Energy Agency IEA. 2022. “Transport. Sectoral Overview”. Available at: https://www.iea.org/reports/transport.
  • 19. Iu. 2011. Iu Intermodal Technical Committee Unaccompanied Combined Transport Guide on Coding and Certification. P. 1-27.
  • 20. Izdebski M., I. Jacyna-Gołda, P. Gołębiowski, J. Plandor. 2020. “The optmization tool supporting supply chain management in the multi-criteria approach”. Archives of Civil Engineering 66(3): 505-524. DOI: https://doi.org/10.24425/ace.2020.134410.
  • 21. Jachimowski R. 2017. “Review of transport decision problems in the marine intermodal terminal”. Archives of Transport 44(4): 35-45. DOI: https://doi.org/10.5604/01.3001.0010.6160.
  • 22. Jachimowski R., E. Szczepański, M. Kłodawski, K. Markowska, J. Dąbrowski. 2018. „Selection of a container storage strategy at the rail-road intermodal terminal as a function of minimization of the energy expenditure of transshipment devices and CO2 emissions”. Annual Set The Environment Protection 20(2): 965-988. ISSN: 1506-218X.
  • 23. Jacyna M. 2022. Wspomaganie decyzji w praktyce inżynierskiej. [In Polish: Decision support in engineering practice]. PWN: Warsaw. DOI: https://doi.org/10.53271/2022.058.
  • 24. Jacyna M., R. Żochowska, A. Sobota, M. Wasiak. 2021. „Scenario Analyses of Exhaust Emissions Reduction through the Introduction of Electric Vehicles into the City”. Energies 14: 2030. DOI: https://doi.org/10.3390/en14072030.
  • 25. Jacyna-Gołda I., M. Izdebski. 2017. „The Multi-criteria Decision Support in Choosing the Efficient Location of Warehouses in the Logistic Network”. Procedia Engineering 187: 635-640. DOI: https://doi.org/10.1016/j.proeng.2017.04.424.
  • 26. Krstić M.D., S.R. Tadić, N. Brnjac, S. Zečević. 2019. “Intermodal Terminal Handling Equipment Selection Using a Fuzzy Multi-criteria Decision-making Model”. Promet - Traffic&Transportation 31(1): 89-100. DOI: https://doi.org/10.7307/ptt.v31i1.2949.
  • 27. Kuzmicz A.K., E. Pesch. 2019. “Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation”. Omega 85: 194-213. DOI: https://doi.org/10.1016/j.omega.2018.06.004.
  • 28. La Cagnina L., F. Mertoli, A. Nicotra, S. Scirè’ Chianetta, C. Ingrao, M. Di Martino. 2019. “Prevention and control of emissions in intermodal transport: the importance of environmental protection”. Procedia Environmental Science, Engineering and Management 6(2): 159-167.
  • 29. Lasota M., M. Jacyna, M. Wasiak, A. Zabielska. 2023. “The Use of Multi-criteria Methods in the Problem of Selecting Vehicles for Oversize Cargo Transport”. In: Sierpiński G., H. Masoumi, E. Macioszek (eds). Challenges and Solutions for Present Transport Systems. TSTP 2022. Lecture Notes in Networks and Systems 609. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-24159-8_2.
  • 30. Li C., A. Otto, E. Pesch. 2018. “Solving the single crane scheduling problem at rail transshipment yards”. Discrete Applied Mathematics 264: 134-147. DOI: https://doi.org/10.1016/j.dam.2018.07.021.
  • 31. Małachowski J., J. Ziółkowski, M. Oszczypała, J. Szkutnik-Rogoż, A. Lęgas. 2021. “Assessment of options to meet transport needs using the MAJA multi-criteria method”. Archives of Transport 57(1): 25-41. DOI: https://doi.org/10.5604/01.3001.0014.7482.
  • 32. Mostert M., A. Caris, S. Limbourg. 2017. “Road and intermodal transport performance: the impact of operational costs and air pollution external costs”. Research in Transportation Business & Management 23: 75-85. DOI: https://doi.org/10.1016/j.rtbm.2017.02.004.
  • 33. Nader M., A. Kostrzewski, M. Kostrzewski. 2017. „Technological conditions of intermodal transshipment in Poland”. Archives of Transport 41(1): 73-88. DOI: https://doi.org/10.5604/01.3001.0009.7388.
  • 34. Nehring K., M. Kłodawski, R. Jachimowski, P. Klimek, R. Vašek. 2021. „Simulation analysis of the impact of container wagon pin configuration on the train loading time in the intermodal terminal”. Archives of Transport 60(4): 155-169. DOI: https://doi.org/10.5604/01.3001.0015.6928.
  • 35. Ocampo L., G.J. Genimelo, J. Lariosa, R. Guinitaran, P.J. Borromeo, M.E. Aparente, T. Capin, M. Bongo. 2020. “Warehouse location selection with TOPSIS group decision-making under different expert priority allocations”. Engineering Management in Production and Services 12(4): 22-39. DOI: https://doi.org/10.2478/emj-2020-0025.
  • 36. Odu G.O. 2019. “Weighting Methods for Multi-Criteria Decision Making Technique”. J. Appl. Sci. Environ. Manage 23(8): 1449-1457. DOI: https://doi.org/10.4314/jasem.v23i8.7.
  • 37. Olivos C., H. Caceres. 2022. “Multi-objective optimization of ambulance location in Antofagasta, Chile”. Transport 37(3): 177-189. DOI: https://doi.org/10.3846/transport.2022.17073.
  • 38. Özcan T., N. Çelebi, Ş. Esnaf. 2011. “Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem”. Expert Systems with Applications 38(8): 9773-9779. DOI: https://doi.org/10.1016/j.eswa.2011.02.022.
  • 39. Pekin E., C. Macharis, D. Meers, P. Rietveld. 2013. “Location Analysis Model for Belgian Intermodal Terminals: Importance of the value of time in the intermodal transport chain”. Computers in Industry 64(2): 113-120. DOI: https://doi.org/10.1016/j.compind.2012.06.001.
  • 40. Pencheva V., A. Asenov, A. Sladkowski, B. Ivanov, I. Georgiev. 2022. “Current Issues of Multimodal and Intermodal Cargo Transportation. Modern Trends and Research in Intermodal Transportation. Studies in Systems, Decision and Control 400. DOI: https://doi.org/10.1007/978-3-030-87120-8_2.
  • 41. PNISO, 2018. PN-ISO 668:2018-05 standard. Cargo containers series 1 - Classification, dimensions and maximum gross weights.
  • 42. Ramalho M.M., T.A. Santos. 2021. “Numerical Modeling of Air Pollutants and Greenhouse Gases Emissions in Intermodal Transport Chains”. Journal of Marine Science and Engineering 9(6): 679. DOI: https://doi.org/10.3390/jmse9060679.
  • 43. Ricci S., L. Capodilupo, B.K. Mueller, J. Schneberger. 2016. „Assessment Methods for Innovative Operational Measures and Technologies for Intermodal Freight Terminals”. 6th Transport Research Arena 4: 2840-2849. April 18-21, 2016. DOI: https://doi.org/10.1016/j.trpro.2016.05.351.
  • 44. Szczepański E., J. Jachimowski, M. Izdebski, I. Jacyna-Gołda. 2019. „Warehouse location problem in supply chain designing: a simulation analysis”. Archives of Transport 50(2): 101-110. DOI: https://doi.org/10.5604/01.3001.0013.5752.
  • 45. Tadić S., M. Krstić, V. Roso, N. Brnjac. 2019. „Planning an Intermodal Terminal for the Sustainable Transport Networks”. Sustainability 11: 4102. DOI: https://doi.org/10.3390/su11154102.
  • 46. Tadić S., M. Krstić, S. Zacewić. 2020. „Defining the Typical Structures of the Intermodal Terminals”. Quantitive Methods in Logistics: 67-86. DOI: https://doi.org/10.37528/FTTE/9786673954196.004.
  • 47. UIC. 2011. UIC CODE 571-4 OR: Standard wagons - Wagons for combined transport Characteristics. 5th ed. P. 1-95.
  • 48. UIRR. 2021. International Union For Rail Road Combined Transport, 2021. UIC Freight Department: 2020 Report on Combined Transport in Europe. November 2020. Available at: https://www.uirr.com/media-centre/press-releases-and-position-papers/2021/mediacentre/1675-2020-report-on-combined-transport-in-europe.html.
  • 49. UN. 2023. United Nations. IPCC Climate Change 2023: Synthesis Report. Available at: https://www.ipcc.ch/report/ar6/syr/.
  • 50. UTK. 2022. Urząd Transportu Kolejowego. [In Polish: Railway Transport Office]. Data - intermodal transport. Available at: https://dane.utk.gov.pl/sts/transport-intermodalny.
  • 51. UTK. 2023. Urząd Transportu Kolejowego. [In Polish: Railway Transport Office]. Terminal map. Data on intermodal terminals. Available at: https://dane.utk.gov.pl/sts/transport-intermodalny/mapa-terminali/18573,Dane-o-terminalach-intermodalnych.html.
  • 52. Viorela-Georgiana S.C. 2015. “Intermodal transport- a way of achieving sustainable development”. Constanta Maritime University Annals 22: 145-148.
  • 53. Wang L., X. Zhu. 2019. “Container Loading Optimization in Rail-Truck Intermodal Terminals Considering Energy Consumption”. Sustainability 11(8): 2383. DOI: https://doi.org/10.3390/su11082383.
  • 54. Wasiak M., Niculescu A.I., Kowalski M. 2020. „A generalized method for assessing emissions from road and air transport on the example of Warsaw Chopin Airport”. Archives of Civil Engineering 66(2): 399-419. DOI: https://doi.org/10.24425/ace.2020.131817.
  • 55. WHO. 2022. World Health Organization. WHO Air quality Database 2022. Available at: https://www.who.int/publications/m/item/who-air-quality-database-2022.
  • 56. Wiese J., L. Suhl, N. Kliewer. 2010. “Mathematical models and solution methods for optimal container terminal yard layouts”. OR Spectrum 32: 427-452. DOI: https://doi.org/10.1007/s00291.010.0203.6.
  • 57. Wiśnicki B., A. Dyrda. 2016. “Analysis of the Intermodal Transport Efficiency in the Central and Eastern Europe”. Naše more 63(2): 43-47. DOI: https://doi.org/10.17818/NM/2016/2.1.
  • 58. Yung-Cheng L., Ch.P.L. Barkan, H. Önal. 2008. “Optimizing the aerodynamic efficiency of intermodal freight trains”. Transportation Research Part E: Logistics and Transportation Review 44(5): 820-834, Available at: https://www.sciencedirect.com/science/article/pii/S1366554507000804.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-480b17fa-3406-46ff-ac9c-ffdfe32efcd6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.