Identyfikatory
Warianty tytułu
Application of time-history analysis in the design of constructions in seismically active regions
Języki publikacji
Abstrakty
Obciążenia sejsmiczne ze względu na swój losowy charakter stanowią jedno z większych wyzwań stawianych współczesnej inżynierii. Na obszarze Polski problem naturalnej sejsmiczności jest niewielki i dotyczy głównie obszaru wzdłuż południowej granicy. Większe zainteresowanie trzęsieniami ziemi ma związek z coraz częstszym projektowaniem obiektów zlokalizowanych w rejonach o podwyższonej aktywności sejsmicznej, poza terenami Polski. Artykuł skupia się na odpowiednim wyborze danych, służących do przeprowadzania analiz w dziedzinie czasu (time-history), które ze względu na coraz większą uwagę zwracaną na przewidywanie zachowania konstrukcji (performance based design), są powszechniej stosowane.
Due to their random nature, seismical loads pose one of greater challenges to modern engineering. Within the territory of Poland, the problem of natural seismicity is little and it concerns mainly the area along the southern border. Greater interest in earthquakes stems from more and more frequent cases of designing facilities located in regions with increased seismical activity outside Poland. The article focuses on adequate selection of data which serve to perform analyses in the time-history scope, which are more commonly used due to constantly growing attention devoted to predicting the construction behaviour (performance based design).
Czasopismo
Rocznik
Tom
Strony
37--46
Opis fizyczny
Bibliogr. 53 poz., il., tab.
Twórcy
autor
- Politechnika Poznańska
Bibliografia
- [1] Zembaty Z., Wiejacz P., Czy Polsce potrzebna jest sejsmiczna norma budowlana?, Czasopismo Techniczne, z. 2-B/2007, str. 127–134, 2007
- [2] Global Seismic Hazard Assessment Program, (Online), Available: http://www.seismo.ethz.ch/static/gshap/ceurope/(Data uzyskania dostępu: 01 07 2016)
- [3] EN 1998–1:2004 Eurokod 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings., European Committee for Standardizations, 2004
- [4] Zembaty Z., O projektowaniu obiektów budowlanych poddanych wpływom sejsmicznym według Eurokodu 8, Inżynieria i Budownictwo, tom 10, str. 539–544, 2010
- [5] Bommer J. J., Deterministic vs. probabilistic seismic hazard assessment: an exaggerated and obstructive dichotomy, Journal of Earthquake Engineering, tom 6, Special Issue 1, str. 43–73, 2002
- [6] Field E., Jordan T., Cornell C., OpenSHA : A Developing Community- Modeling Environment for Seismic Hazard Analysis, Seismological Research Letters, tom 74, nr 4, str. 406–419, 2003
- [7] Collins N., Graves R., Ichinose G. S. P., Ground motion attenuation relations for the intermountain west, USGS , Pasadena, 2006
- [8] Boore D. M., Atkinson G. M., Ground-motion prediction equations for the average horizontal component of PGA , PGV , and 5%-damped PSA at spectral periods between 0.01s and 10.0 s, Earthquake Spectra, tom 24, nr 1, str. 99–138, 2008
- [9] Abrahamson N., Silva W., Summary of the Abrahamson & Silva NGA ground-motion relations, Earthquake Spectra, tom 24, nr 1, str. 67–97, 2008
- [10] Campbell K. W., Bozorgnia Y., NGA ground motion model for the geometric mean horizontal component of PGA , PGV , PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthquake Spectra, tom 24, nr 1, str. 139–171, 2008
- [11] Elghazouli A. Y. et all, Seismic design of buildings to Eurocode 8, New York: Spon Press, 2009
- [12] Krinitzsky E. L., How to obtain earthquake ground motions for engineering design, Engineering Geology, tom 65, str. 1–19, 2002
- [13] Baker J. W., Cornell C. A., Spectral shape, epsilon and record selection, Earthquake Engineering and Structural Dynamics, tom 35, str. 1077–1095, 2006
- [14] Baker J. W., Conditional mean spectrum: tool for ground-motion selection, Journal of Structural Engineering, tom 137, nr 3, str. 322–331, 2011
- [15] Roy R., Thakur P., Chakroborty S., Spectral matching of real ground motions: Application to horizontally irregular systems in elastic range, Advances in Structural Engineering, tom 17, nr 11, str. 1623–1638, 2014
- [16] ISE/AFPS, Manual for the seismic design of steel and concrete buildings to Eurocode 8, London: The Institution of Structural Engineers, 2010
- [17] PN-EN 1990:2004 Eurokod: Podstawy projektowania konstrukcji, Polski Komitet Normalizacyjny, 2004
- [18] Chopra A. K., Goel R. K., Direct displacement-based design: use of inelastic design spectra versus elastic design spectra, Earthquake Spectra, tom 17, nr 1, str. 47–64, 2001
- [19] Martinelli E., Faella C., Nonlinear static analyses based on either inelastic or elastic spectra with equivalent viscous damping: A parametric comparison, Engineering Structures, tom 88, str. 241–250, 2015
- [20] Chopra A. K., Dynamics of structures. Theory and applications to earthquake engineering, New York: Pearson Education Inc., 2012
- [21] Paz M., Leigh W., Structural dynamics. Theory and computation, 5-th edition, New York: Springer Science Business Media, 2004
- [22] I. C. o. B. Officials, UBC 1997. Uniform Building Code, Whittier, California, 1997
- [23] A. S. o. C. E. E. Institute, ASCE 7–10 Minimum Design Loads for Buildings and Other Structures, ASCE, 2013
- [24] Taranath B. S., Wind and earthquake resistant buildings, New York: Marcel Dekker, 2005
- [25] Lewandowski R., Dynamika konstrukcji budowlanych, Poznań: Wydawnictwo Politechniki Poznańskiej, 2006
- [26] Miranda E., Ruiz-Garcia J., Evaluation of approximate methods to estimate maximum inelastic displacement demands, Earthquake Engineering and Structural Dynamics, tom 31, str. 539–560, 2002
- [27] Oguzmert M., Lui E. M., Seismic design of inelastic structures using equivalent linear system parameters: part 1 – derivation and comparison, The IES Journal part A: Civil & Structural Engineering, tom 4, nr 2, str. 89–102, 2011
- [28] Oguzmert M., Lui M. E., Seismic design of inelastic structures using equivalent linear system parameters: part 2 – application and verification, The IES Journal Part A: Civil & Structural Engineering, tom 4, nr 2, str. 103–114, 2011
- [29] Kwan W. P., Billington S. L., Influence of hysteretic behavior on equivalent period and damping of structural systems, Journal of Structural Engineering, tom 129, nr 5, str. 576–585, 2003
- [30] Guyader A. C., Iwan W. D., Determining equivalent linear parameters for use in a capacity spectrum method of analysis, Journal of Structural Engineering, tom 132, nr 1, str. 59–67, 2006
- [31] Gunay M. S., An equivalent linearization procedure for seismic response prediction of MDOF systems, Ankara: Ph. D. Thesis, 2008
- [32] Gunay M. S., Sucuoglu H., Inelastic seismic displacement response prediction of MDOF systems by equivalent linearization, w Proceedings of the 14-th World Conference on Earthquake Engineering, Beijing, 2008
- [33] Liu T., Equivalent linearization analysis method for base-isolated buildings, Venice: Ph. D. Thesis, 2014
- [34] Elnashai A. S., Advanced inelastic static (pushover) analysis for earthquake applications, Structural Engineering and Mechanics, tom 12, nr 1, str. 51–69, 2001
- [35] Chopra A. K., Goel R. K., A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Engineering and Structural Dynamics, tom 31, str. 561–582, 2002
- [36] Fajfar P., Marusic D,. Perus I., Torsional effects in the pushover-based seismic analysis of buildings, Journal of Earthquake Engineering, tom 9, nr 6, str. 831–854, 2005
- [37] Kilar V., Fajfar P., Simple push-over analysis of asymmetric buildings, Earthquake Engineering and Structural Dynamics, tom 26, str. 233–249, 1997
- [38] Chopra A. K., Goel R. K., A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings, Earthquake Engineering and Structural Dynamics, tom 33, str. 903–927, 2004
- [39] Bhatt C., Bento R., The extended adaptive capacity spectrum method for the seismic assessment of plan-asymmetric buildings, Earthquake Spectra, tom 30, nr 2, str. 683–703, 2014
- [40] Bhatt C., Seismic assessment of existing building using nonlinear static procedures (NSPs) – a new 3D pushover procedure. PhD Dissertation, Lisbon: Technical University of Lisbon, 2012
- [41] Fajfar P., Gasperic P., The N2 method for the seismic damage analysis of RC buildings, Earthquake Engineering and Structural Dynamics, tom 25, str. 31–46, 1996
- [42] Haselton C. B, Evaluation of ground motion selection and modification methods: predicting median interstory drift response of buildings, PEER Ground Motion Selection and Modification Working Group, 2009
- [43] Jayaram N., Lin T., Baker J. W., A computationally efficient groundmotion selection algorithm for matching a target response spectrum mean and variance, Earthquake Spectra, tom 27, nr 3, str. 797–815, 2011
- [44] Gasparini D. A., Vanmarcke E. H., Simulated earthquake motions compatible with prescribed response spectra, Massachusetts Institute of Technology, Department of Civil Engineering, 1976
- [45] Vanmarcke E. H., Fenton G. A., Heredia-Zavoni E., SIMQ KE-II Conditioned earthquake ground motion simulator, Princeton University, 1999
- [46] Bommer J. J., Acevedo A. B., The use of real earthquake accelerograms as input to dynamis analysis, Journal of Earthquake Engineering, str. 43–91, tom 8, Special Issue 1 2004
- [47] U.S. Geological Survey Hazard Maps and Site-Specific Data, (Online), Available: http://earthquake.usgs.gov/hazards/products/. (Data uzyskania dostępu: 12 07 2016)
- [48] Bazzurro P. i C. C. A., Disaggregation of seismic hazard, Bulletin of the Seismological Society of America, str. 501–520, 1999
- [49] Işık E., Kutanis M., Determination of local site-specific spectra using probabilistic seismic hazard analysis for Bitlis Province, Turkey, Earth Sciences Research Journal, tom 19, nr 2, str. 129–134, 2015
- [50] Azzaro R., D’Amico S., Peruzza L., Tuvè T., Probabilistic seismic hazard at Mt. Etna (Italy): The contribution of local fault activity in midterm assessment, Journal of Volcanology and Geothermal Research, tom 251, str. 158–169, 2013
- [51] Katsanos E. I., Sextos A. G., Manolis G. D., Selection of earthquake ground motions records: a state of th art review from a structural engineering perspective, Soil Dynamics and Earthquake Engineering, 2010
- [52] Chiou B., Darragh R., Gregor N., Silva W., NGA project strongmotion database, Earthquake Spectra, tom 24, nr 1, str. 23–44, 2008
- [53] Kwong N. S., Chopra A. K., Selection and scaling of ground motions for nonlinear response history analysis of buildings in performance-based earthquake engineering, Pacific Earthquake Engineering Research Center, California, 2015
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-410387b6-5422-42b5-bf17-d9c42056f5de