PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Responses to UV-B exposure by saplings of the relict species Davidia involucrata Bill are modified by soil nitrogen availability

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change scenarios suggest that plants will be exposed to increasing levels of ultraviolet radiation in the future. The dove tree, Davidia involucrata Bill (Davidiaceae) is a rare and endangered tree species in China. Its distribution is predicted to become more montane as the climate warms, exposing it to higher levels of UV-B and different soil conditions. We compared the effects of glasshouse ambient (7.08 uW cm-2) and increased (13.93 uW cm-2) UV-B on survivorship, secondary metabolites indicative of radiation damage, and putative defensive responses of Davidia involucrata saplings growing under current and increased nitrogen conditions (5 and 25 g m-2 a-1 N). Mortalities were higher among plants exposed to increased UV-B, but only in soils with high supplementary nitrogen. Increases in compounds associated with defense against radiation were more frequently recorded under high supplementary nitrogen conditions. This rare and localised plant is highly sensitive to elevated UV-B when growing in high nitrogen soils, a combination that is likely to increase in the summer.
Rocznik
Strony
101--110
Opis fizyczny
Bibliogr. 50 poz., il.
Twórcy
autor
  • Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
autor
  • Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
  • College of Life Science, China West Normal University, Nanchong 637002, China
autor
  • Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
autor
  • Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
Bibliografia
  • 1. Alexieva V., Sergiev I., Mapelli S., Karanov E. 2001 – The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat – Plant Cell Envi-ron. 24: 1337–1344.
  • 2. Allen D.J., Nogués S., Baker N.R. 1998 – Ozone depletion and increased UV-B radiation: Is there a real threat to photosynthesis – J. Exp. Bot. 49: 1775–1788.
  • 3. Bates L.S., Waldren R.P., Teare I.D. 1973 – Rapid determination of free proline for water studies – Plant Soil, 39: 205–208.
  • 4. Becana M., Aparicio-Tejo P., Irigoyen J.J., Sanchez-Diaz M. 1986 – Some enzymes of hydrogen Peroxide Metabolism in leaves and root nodules of Medicago sativa – Am. Soc. Plant Biol. 82: 1169–1171.
  • 5. Bowden R.D., Davidson E., Savage K., Arabia C., Steudler P. 2004 – Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest – Forest Ecol. Manag. 196: 43–56.
  • 6. Caldwell M.M., Bornman J.F., Ballare C.L., Flint S.D. Kulandaivelu G. 2007 – Terrestrial ecosystems, increased solar ultraviolet radiation, and interaction with other climate change factors – Photochem. Photobiol. Sci. 6: 252–266.
  • 7. Chen I., Hill J.K., Ohlemüller R., Roy D.B., Thomas C.D. 2011 – Rapid range shifts of species associated with high levels of climate warming – Science, 333: 1024–1026.
  • 8. Correia C.M., Coutinho J.F., Björn L.O., José M.G. Pereira T. 2000 – Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions – Eur. J. Agron. 12: 117–125.
  • 9. Correia C.M., Pereira J.M.M., Coutinho J.F., Björn L.O., José M.G., Pereira T. 2005 – Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize: a Mediterranean field study – Eur. J. Agron. 22: 337–347.
  • 10. Costa H., Gallego S.M., Tomaro M.L. 2002 – Effects of UV-B radiation on antioxidant defense system in sunflower cotyledons – Plant Sci. 162: 939–945.
  • 11. Dai Q., Furness N.H., Upadhyaya M.K. 2004 – UV-absorbing compounds and susceptibility of weedy species to UV-B radiation – Weed Biol. Manage. 4: 95–102.
  • 12. Day T.A., Neale P.J. 2002 – Effects of UV-B radiation on terrestrial and aquatic primary producers – Ann. Rev. Ecol. Syst. 33: 371–396.
  • 13. De La Rose T.M., Aphalo P.J., Lehto T. 2003 – Effects of ultraviolet-B radiation on growth, mycorrhizas and mineral nutrition of silver birch (Betula pendula Roth) seedlings grown in low-nutrient conditions – Global Change Biol. 9: 65–73.
  • 14. Du Q. 2011 – Statistical analysis by SPSS – Posts and Telecommunications Press, Beijing.
  • 15. Frohnmeyer H., Staiger D. 2003 – Ultraviolet-b radiation-mediated responses in plants. balancing damage and protection – Plant Physiol. 133: 1420–1428.
  • 16. Glass A.D.M. 2003 – Nitrogen use efficiency of crop plants: physiological constraints upon nitrate adsorption – Crit. Rev. Plant Sci. 22: 453–470.
  • 17. Guo J.Y., Yang Y., Wang G.X., Yang L.D., Sun X.Y. 2010 – Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply – Physiol. Plantarum, 139: 335–347.
  • 18. Heimann M., Reichstein M. 2008 – Terrestrial ecosystem carbon dynamics and climate feedbacks – Nature, 451: 289–292.
  • 19. Hocking P.J., Meyer C.P. 1991 – Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize – Aust. J. Plant Physiol. 18: 339–356.
  • 20. Hoeppner S.S., Dukes J.S. 2012 – Interactive responses of old-field plant growth and composition to warming and precipitation – Global Change Biol. 18: 1754–1768.
  • 21. Hunt J.E., McNeil D.L. 1998 – Nitrogen status affects UV-B sensitivity of cucumber – Plant Physiol. 25: 79–86.
  • 22. IPCC 2007 – Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Eds: M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, C.E. Hanson – Cambridge University Press, Cambridge.
  • 23. Kant S., Bi Y.M., Weretilnyk E., Barak S., Rothstein S.J. 2008 – The arabidopsis halophytic relative thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation – Plant Physiol. 147: 1168–1180.
  • 24. Kramer G.F., Norman H.A., Krizek D.T., Mirecki R.M. 1991 – Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber – Phytochemistry, 30: 2101–2108.
  • 25. Krause G.H., Grube E., Virgo A., Winter K. 2003 – Sudden exposure to solar UV-B radiation reduces net CO2 uptake and photosystem I efficiency in shade-acclimated tropical tree seedlings – Plant Physiol. 131: 745–752.
  • 26. Li D.J., Mo J.M., Fang Y.T., Pen S.L., Gundersen P. 2003 – Impact of nitrogen deposition on forest plants – Acta Ecol. Sin. 23: 1891–1900 (in Chinese with English abstract).
  • 27. Lichtenthaler H.K. 1987 – Chlorophylls and carotenoids: pigments of photosynthetic biomembranes – Method. Enzymol. 148: 350–382.
  • 28. Luo Y., Gerten D., Le Maire G., Parton W.J., Weng E., Zhou X.H., Keough C., Beier C., Ciais P., Cramer W., Dukes J., Emmett B., Hanson P.J., Knapp A., Linder S., Nepstad D., Rustad L. 2008 – Modeled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones – Global Change Biol. 14: 1986–1999.
  • 29. Middleton E.M., Teramura A.H. 1993 – The Role of Flavonol Glycosides and Carotenoids in Protecting Soybean from Ultraviolet-B Damage – Plant Physiol. 103: 741–752.
  • 30. Nakaji T., Fukami M., Dokiya Y., Izuta T. 2001 – Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings – Trees, 15: 453–461.
  • 31. Norby R.J., Luo Y. 2004 – Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world – New Phytol. 162: 281–293.
  • 32. Paul N.D., Gwyn-Jones D. 2003 – Ecologi¬cal roles of solar UV radiation: towards an integrated approach – Trends Ecol. Evol. 18: 48–55.
  • 33. Qi G., Li J.T., Ruan Q.P., Yang J., Su Z.X. 2009 – An optimised, small-scale preparation of high-quality RNA from dry seeds of Davidia involucrata – Phytochem. Analysis, 20: 139–142.
  • 34. Queiroz C.G.S., Alonso A., Mares-Guia M., Magalhaes A.C. 1998 – Chilling-induced changes in membrane fluidity and antioxidant enzyme activities in Coffea arabica L. roots – Biol. Plantarum, 41: 403–413.
  • 35. Rajagopal S., Murthy S.D., Mohanty P. 2000 – Effect of ultraviolet-B radiation on intact cells of the Cyanobacterium Spirulina platensis: characterization of the alterations in the thylakoid membranes – J. Photochem. Photo¬biol. B. 54: 61–66.
  • 36. Rustad L.E. 2008 – The response of terrestrial ecosystems to global climate change: towards an integrated approach – Sci. Total Environ. 404: 222–235.
  • 37. Santos I., Fidalgo F., Almeida J.M., Salema R. 2004 – Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation – Plant Sci. 167: 925–935.
  • 38. Saradhi P.P., Alia S.A., Prasad K.V., Arora S. 1995 – Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation – Biochem. Bioph. Res. Co. 209: 1–5.
  • 39. Searles P.S., Flint S.D., Caldwell M.M. 2001 – A meta-analysis of plant field studies simulating stratospheric ozone depletion – Oecologia, 127: 1–10.
  • 40. Shulaev V., Oliver D.J. 2006 – Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research – Plant Physiol. 141: 367–372.
  • 41. Weih M., Johanson U., Gwynn-Jones D. 1998 – Growth and nitrogen utilization in seedlings of mountain birch (Betula pubescens ssp. tortuosa) as affected by ultraviolet radiation (UV-A and UV-B) under laboratory and outdoor conditions – Trees, 12: 201–207.
  • 42. Wolf L., Rizzini L., Stracke R., Ulm R., Rensing A.S. 2010 – The molecular and physiological responses of Physcomitrella patens to ultraviolet-B radiation – Plant Physiol. 153: 1123–1134.
  • 43. Wu G., Han X., Jing L.I., Keming M.A. 2000 – Relationship between human activities and survival of rare and endangered species Davidia involucrata – Chinese J. Appl. Ecol. 11: 493–496 (in Chinese with English abstract).
  • 44. Wu G., Han S.H., Wang H.C., Luo Y.C., Deng H.B., Zhao J.Z. 2004 – Living characteristics of rare and endangered species Davidia involucrata – J. For. Res. 15: 39–44 (in Chinese with English abstract).
  • 45. Xiong F.S., Ruhland C.T., Day T.A. 2000 – Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica – Physiol. Plantarum, 106: 276–286.
  • 46. Xiong F.S., Day T.A. 2001 – Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants – Plant Physiol. 125: 738–751.
  • 47. Xu X., Zhao H.X., Zhang X.L., Hanninen H., Korpelainen H., Li C.Y. 2010 – Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana – Tree Physiol. 30: 1489–1498.
  • 48. Yang F., Miao L.F. 2010 – Adaptive responses to progressive drought stress in two poplar species originating from different altitudes – Silva Fenn. 44: 23–37.
  • 49. Yao X.Q., Liu Q. 2007 – Changes in photosynthesis and antioxidant defenses of Picea asperata seedlings to enhanced ultraviolet-B and to nitrogen supply – Physiol. Plantarum, 129: 364–374.
  • 50. Zhang Q.H., Guo Q.S., Xu D.Y. 2000 – Influence of climate changes on geographical distribution of Davidia involucrata, the precious and endangered species native to China – Sci. Silvae Sin. 36: 47–52 (in Chinese with English abstract).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3f01c51f-6731-486d-b2fe-f4ff2c583a4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.