PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Paper-sawdust composites: fabrication and comparison in terms of heat transfer and strength properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kompozyty papierowo-trocinowe: wytwarzanie i porównanie właściwości cieplnych i wytrzymałościowych
Języki publikacji
EN
Abstrakty
EN
This study was designed to examine the feasibility of recycling cassava effluent, sawdust, and unused paper products to enhance their utilization for beneficial purpose. Waste newspaper paste (WNP), Waste writing-paper paste (WWP), and Waste carton paper paste (WCP) were prepared and then used separately to similarly fabricate composite panels with Sawdust particle (SDP) proportioned at 0%, 25%, 50%, 75%, and 100% by weight. The binder used was cassava starch slurry prepared from the effluent. Bulk density, water absorption, thermal conductivity, specific heat capacity, thermal diffusivity, nailability, and flexural strength were determined for the developed samples. From the results obtained, the samples were found to be light-weight and their thermal insulation performance improved with increasing proportions of the SDP. Though samples containing the WCP exhibited the best satisfactory performance, it was found that all the studied samples could perform more effectively and efficiently as ceilings compared to some of those reported in the literature. From scientific-economic viewpoint, valorizing the above-mentioned wastes as described in this paper could help to protect the environment and also yield value-added insulation ceilings for enhancement of sustainable building construction especially in tropical areas.
PL
Celem pracy było określenie możliwości recyklingu ścieków z manioku, trocin i odpadowych materiałów papierniczych w celu ich szerszego wykorzystania. Nitki z makulatury gazetowej (WNP), nitki z makulatury z papieru do pisania (WWP) i nitki z makulatury z kartonu (WCP) zostały przygotowane, a następnie użyte osobno do wytworzenia paneli kompozytowych z dodatkiem trocin (SDP) przy udziale masowym 0%, 25%, 50 %, 75% i 100%. Zastosowanym spoiwem była przygotowana z odcieku zawiesina skrobi z manioku. Dla przygotowanych próbek określono gęstość nasypową, nasiąkliwość, przewodność cieplną, ciepło właściwe, dyfuzyjność cieplną, zdolność do wbijania gwoździ i wytrzymałość na zginanie. Na podstawie uzyskanych wyników stwierdzono, że próbki miały małą gęstość objętościową, a ich właściwości termoizolacyjne poprawiały się wraz ze wzrostem udziału trocin (SDP). Chociaż próbki zawierające WCP wykazywały najlepsze właściwości, stwierdzono, że z wszystkich badanych próbek można wytworzyć sufity o lepszych właściwościach w porównaniu z podobnymi opisanymi w literaturze. Z naukowo-ekonomicznego punktu widzenia zastosowanie wyżej wymienionych odpadów, jak opisano w tym artykule, może pomóc w ochronie środowiska, a także w uzyskaniu bardziej ciepłochronnych stropów, a co za tym idzie przyczyni się do rozwoju bardziej zrównoważonego budownictwa, zwłaszcza w obszarach tropikalnych.
Rocznik
Strony
38--49
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr., wzory
Twórcy
  • Akwa Ibom State University, Ikot Akpaden, MkpatEnin, Nigeria
  • Akwa Ibom State University, Ikot Akpaden, MkpatEnin, Nigeria
  • Akwa Ibom State University, Ikot Akpaden, MkpatEnin, Nigeria
  • University of Uyo, Uyo, Nigeria
  • University of Uyo, Uyo, Nigeria
  • Michael Okpara University of Agriculture, Umudike, Nigeria
Bibliografia
  • [1] Begum K., Islam M.A. (2013): Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites: A Review, Research Journal of Engineering Sciences, 2(3); 46-53.
  • [2] Mahir F.I., Keya K.N., Sarker B., Nahiun K.M., Khan R.A. (2019): A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites, Materials Engineering Research, 1(2); 86-97; https://doi.org/10.25082/MER.2019.02.007.
  • [3] Sanandiya N.D., Ottenhein C., Phua J.W., Caligiani A., Dritsas S., Fernandez J.G. (2020): Circular manufacturing of Chitinous biocomposites via bioconversion of urban refuse, Scientific Reports, 10, Article number: 4632.
  • [4] McKinney R.W.J. (1995): Technology of paper recycling, Blackie Academic and Professional, Chapman and Hall, New York, London, pp. 7-15.
  • [5] Rizki M., Tamai Y., Takashi Y., Terazawa M. (2010): Scrutiny on physical properties of sawdust from tropical commercial wood species: Effects of Different mills and sawdust’s particle size, Journal of Forestry Research, 7(1); 20-23.
  • [6] Zafar S., (2019): Biomass from wood processing industries, Recycling of wood waste, www.bioenergyconsult.com; Last accessed November 5, 2019.
  • [7] Owoyemi J.M., Zakariya H.O., Elegbede I.O. (2016): Sustainable wood waste management in Nigeria, Environmental & Socio-economic Studies, 4(3); 1-9; https://10.1515/environ-2016-0012.
  • [8] Achi C.G., Coker A.O., Sridhar M.K.C. (2018): Cassava processing wastes: Options and Potentials for Resource Recovery in Nigeria. In: S. Ghosh (eds) Utilization and Management of Bioresources, Springer, Singapore, pp. 77-89; https://10.1007/978-981-10-5349-8.
  • [9] Guimařaes G.H.C., Dantas R.L., Sousa A.S.B., Soares L.G., Melo R.S., Silva R.S., Lima R.P., Mendonca R.M.N., Beaudry R.M., S.M. Silva (2017): Impact of Cassava Starch-alginate based coating added with ascorbic acid and elicitor on quality and sensory attributes during pineapple storage, African Journal of Agricultural Research, 12(9); 664-673; https://doi.org/10.58971/AJAR2016.11652.
  • [10] Praseptiangga D., Utami R., Khasanah L.U., Evirananda I.P., Kawiji (2017): Effect of Cassava-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9, International Conference on Advanced Materials for Better Future. IOP Conference Series: Materials Science and Engineering, 176(1):012054; https://doi.org/10.1088/1757-899X/176/1/012054.
  • [11] Chitedze J., Monjerezi M., Saka J.D.K., Steenekamp J. (2012): Binding effect of cassava starches on the compression and mechanical properties of Ibuprofen tablets, Journal of Applied Pharmaceutical Science, 2(4); 04-10; https://doi.org/10.7324/JAPS.02.4.004.
  • [12] Adjei F.K., Osei Y.A., Kuntworbe N., Ofori-Kwakye K. (2017): Evaluation of the disintegrant properties of Native Starches of Five New Cassava varieties in Paracetamol tablet formulations, Journal of Pharmaceutics, Vol. 2017 Article ID 2326912; 1-9; https://doi.org/10.1155/2017/2326912.
  • [13] Etuk S.E., Adeniran A.O., Robert U.W., Akankpo A.O., Agbasi O.E. (2022): A Novel Study of Dielectric Properties of Discs Fabricated from Nanopowder of Calcined Clams, Periwinkle, and Oyster Shells, Polytechnica, https://doi.org/10.1007/s41050-022-00039-z.
  • [14] Umanah E.I., Ekpenyong N.E., Akpan A.O. (2022): Electrical and Dielectric Properties of discs fabricated using Periwinkle Shell Nanopowder and Dry Cassava Starch, Bulletin of the Polytechnic Institute of Iași, 68(72), 1; 7-20; https://doi.org/10.2478/bipmf-2022-0001.
  • [15] Adeniran A.O., Akankpo A.O., Edet S.E., Robert U.W., Agbasi O.E. (2022): Comparative study of electrical resistance of disc-shaped compacts fabricated using calcined clams shell, periwinkle shell and oyster shell nanopowder, Kragujevac J. Sci., 44; 25-36; https://doi.org/10.5937/KgJSci2244025A.
  • [16] Umanah E.I., Ekpenyong N.E., Akpan A.O. (2022): Influence of Temperature on Capacitance and Dielectric permittivity of Disc-shaped Compact fabricated from Periwinkle Shell Powder, Researchers Journal of Science and Technology, 2(2); 44-54; https://rejost.com.ng/index.php/home/article/view/34.
  • [17] Okeyinka O.M., Idowu O.J. (2014): Assessment of the suitability of paper waste as an engineering material, Engineering, Technology & Applied Science Research, 4(6); 724-727; https://doi.org/10.48084/etasr.485.
  • [18] Wachira G.G., Gitau A.N., Kimani M.W., Njoroge B.N.K. (2015): Mechanical Properties of Sawdust Briquettes of Eucalyptus Tree Species of Different binders and Press Machines, International Journal of Emerging Technology and Advanced Engineering, 5(4); 532-538.
  • [19] Atoyebi O.D., Adediran A.A., Oluwatimilehin A.C. (2018): Physical and Mechanical Properties evaluation of particleboard produced from sawdust and plastic waste, International Journal of Engineering Research in Africa, 40;1-8; https://doi.org/10.4028/www.scientific.net/JERA.40.1.
  • [20] Abu-Zarifa A., Abu-Shammala M., Al-Sheikh A. (2018): Sustainable manufacturing of particleboards from sawdust and agricultural waste mixed with recycled plastics, American Journal of Environmental Engineering, 8(5); 174-180; https://doi.org/10.5923/j.ajee.20180805.02.
  • [21] Antwi-Boasiako C., Ofosuhene L., Boadu K.B. (2018): Suitability of sawdust from three tropical timbers for wood-cement composites, Journal of Sustainable Forestry, 37(4); 414-428; https://doi.org/10.1080/10549811.2018.1427112.
  • [22] Ku H., Donald M., Cardona F., Trada M. (2012): Flexural Properties of sawdust - reinforced epoxy composites post-cured in microwaves, Journal of Composite Materials, 0(0); 1-12; https://doi.org/10.1177/0021998311433437.
  • [23] Edafiadhe E.O., Nyorere O., Hilary U. (2019): Compressive Behaviours of Oil Bean Shell and Wood Particulates/Epoxy Composite Board, Archives of Current Research International, 16(3); 1-8; https://doi.org/10.9734/acri/2019/v16i330089.
  • [24] Kaza S., Yao L.C., Bhada-Tata P., Woerden F.V. (2018): What a waste 2.0: A global snapshot of solid waste management to 2050, World Bank Publications, Last accessed September 20, 2018. https://openknowledge.worldbank.org/handle/10986/30317.
  • [25] ASTM D6393/D6393M (2021): Standard Test Method for Bulk Solids Characterisation by Carr Indices, ASTM International, West Conshohocken, PA.
  • [26] Al-Hashemi H.M.B., Al-Amoudi O.S.B. (2018): A review on the angle of repose of granular materials, Powder Technology, 330; 397-417; https://doi.org/10.1016/j.powtec.2018.02.003.
  • [27] ASTM C136/C136M (2019): Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA .
  • [28] Ayeni A.O.. Adeeyo O.A., Oresegun O.M., Oladimeji T.E. (2015): Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass, American Journal of Engineering Research, 4(4); 14-19.
  • [29] Robert U.W., Etuk S.E., Agbasi O.E., Okorie U.S. (2021): Quick Determination of Thermal Conductivity of Thermal Insulators Using a Modified Lee-Charlton’s Disc Apparatus Technique, International Journal of Thermophysics, 42: Article number 113; https://doi.org/10.1007/s10765-021-02864-3.
  • [30] Robert U. W., Etuk S. E., Agbasi O. E., Okorie U. S., Ekpenyong N. E., Anonaba A. U. (2022): On the Modification of Lee-Charlton’s Disc Apparatus Technique for Thermal Conductivity Determination, Researchers Journal of Science and Technology, 2(3): 1-17.
  • [31] Robert U.W., Etuk S.E., Agbasi O.E. (2019): Modified Water Displacement Method and its Use for Determination of Bulk Density of Porous Materials, J Renew Energ Mech., 1(1); 1-16; https://doi.org/10.25299/rem.2029.vol1(01).2292.
  • [32] Okorie U.S., Robert U.W., Iboh U.A., Umoren G.P. (2020): Assessment of the suitability of tiger nut fibre for structural applications, Journal of Renewable Energy and Mechanics, 3(1); 32-39; https://doi.org/10.25299/rem.2020.vol3(01).4417.
  • [33] Robert U.W., Etuk S.E., Agbasi O.E., Umoren G.P., Inyang N.J. (2021): Investigation of thermophysical and mechanical properties of board produced from coconut (Cocos nucifera) leaflet. Environmental Technology & Innovation, 24(1); 101869; https://doi.org/10.1016/j.eti.2021/101869.
  • [34] Etuk S.E., Robert U.W., Agbasi O.E. (2020): Design and Performance Evaluation of a device for determination of specific heat capacity of thermal insulators, Beni-Suef University Journal of Basic and Applied Sciences, 9(34); 1-7; https://doi.org/10.1186/s43088-020-00062-y.
  • [35] Vasudeva A.S. (2013): Modern Engineering Physics, 6th revised edn., Part II, S. Chand & Company Ltd, Ram Nagar, New Delhi, p. 39, ISBN 81-219-1757-3.
  • [36] Etuk S.E., Agbasi O.E., Abdulrazzaq Z.T., Robert U.W. (2018): Investigation of thermophysical properties of Alates (swarmers) termites wing as potential raw material for insulation, Int. J. Sci. World, 6(1); 1-7; https://doi.org/10.14419/ijsw.v6i1.8529.
  • [37] Ekpenyong N.E., Umoren G.P., Udo I.E., Yawo O.J. (2022): Assessment of Thermophysical and Mechanical Properties of Composite Panels Fabricated from Untreated and Treated Coconut Husk Particles for Structural Application, Brilliant Engineering, 2; 1-5; https://doi.org/10.36937/ben.2022.4547.
  • [38] Robert U.W., Etuk S.E., Agbasi O.E., Ekong S.A., Abdulrazzaq Z.T., Anonaba A.U. (2021): Investigation of Thermal and Strength Properties of Composite Panels fabricated with Plaster of Paris for Insulation in Buildings, International Journal of Thermophysics, 42(2);25; https://doi.org/10.1007/s10765-020-02780-y.
  • [39] ASTM D790 (2017): Standard Test Methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA.
  • [40] European Pharmacopeia 6.0 (2008): Chapter 2.9.36, Powder Flow, p. 321.
  • [41] Carr R.L. (1965): Evaluating flow properties of solids, Chemical Engineering, 72; 163-168.
  • [42] Akinyemi A.B., Afolayan J.O., Oluwatobi E.O. (2016): Some Properties of Composite Corn Cob and Sawdust particleboards, Construction and Building Materials, 127; 436-441; https://dx.doi.org/10.1016/j.conbuildmat.2016.10.040.
  • [43] EN312 (2010): Particleboards specifications, European Committee for Standardisation, Brussels, Belgium.
  • [44] Rajput E.R.E. (2015): Heat and Mass Transfer, 6th Revised edn., S. Chand & Company PVT ltd, Ram Nagar, New Delhi, p. 15.
  • [45] Gesa F.N., Atser A.R., Aondoakaa I.S. (2014): Investigation of the thermal insulation properties of selected ceiling materials used in Markurdi metropolis (Benue State - Nigeria), American Journal of Engineering Research, 3(11): 245-250.
  • [46] Isheni Y., Yahaya B.S., Mbishida M.A., Achema F., KarfeGayus S. (2017): Production of Agro Waste Composite Ceiling Board (A Case Study of the Mechanical Properties), Journal of Scientific and Engineering Research, 4(6); 208-212.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3d4ec5de-66e4-4344-a5c6-f88396020739
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.