PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green Algae as a Way to Utilize Phosphorus Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of using phosphorus-containing wastewater as a raw material for the cultivation of the green algae strain Chlorella vulgaris ASLI-1 can represent an effective processing of phosphorus-containing by-products. A laboratory experiment was made to study the effect of the concentration of phosphorus-containing wastewater on the biomass density of the green alga strain Chlorella vulgaris ASLI-1. Three weeks after sowing, we measured the biomass density of algae in various components of the phosphorus-containing wastewater. Compared to the control (distilled water), the addition of phosphorus-containing wastes did not adversely affect the culture of green algae, with the exception of a 20% medium where algal cells were discolored and had a low biomass density, 104 CFU. However, more research is needed to better study the response of green algae to phosphorus-containing waste, to determine the amount of phosphorus in cells and solution. In addition, evaluate the agronomic efficiency of the Chlorella vulgaris ASLI-1 strain, cultivated on phosphorus-containing waste, when applying fertilizers for growing vegetables.
Rocznik
Strony
235--240
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
  • Adam Mickiewicz University, Poznan, Poland
  • Shymkent University, Shymkent, Kazakhstan
  • M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
  • M. Auezov South Kazakhstan University, Shymkent, Kazakhstan
Bibliografia
  • 1. Ratjen A.M., J. Gerendás A, 2009. Critical assessment of the suitability of phosphite as a source of phosphorus J. Plant Nutr. Soil Sci., 172, 821–828.
  • 2. Arai Y., D. Sparks, 2007. Phosphate reaction dynamics in soils and soil components: a multiscale approach Adv. Agron., 94, 135–179.
  • 3. Beauchemin S., R. Simard, 1999. Soil phosphorus saturation degree: review of some indices and their suitability for P management in Quebec, Canada Can. J. Soil Sci., 79, 615–625.
  • 4. Bünemann E., D.A. Bossio, P. Smithson, E. Frossard, A. Oberson, 2004. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization Soil Biol. Biochem., 36, 889–901.
  • 5. Childers D.L., J. Corman, M. Edwards, J.J. Elser, 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycleBioscience, 61, 117–124.
  • 6. De Silva D., L. Ruiz, C. Atkinson, T., 1994. Mansfield Physiological disturbances caused by high rhizospheric calcium in the calcifuge Lupinus luteus J. Exp. Bot., 45, 585–590
  • 7. Delorme, J. Angle, F. Coale, R. Chaney, 2000. Phytoremediation of phosphorus-enriched soils Int. J. Phytoremediation, 2, 173–181
  • 8. Eichler-Löbermann, S. Köhne, D. Köppen, 2007. Effect of organic, inorganic, and combined organic and inorganic P fertilization on plant P uptake and soil P pools J. Plant Nutr. Soil Sci., 170, 623–628.
  • 9. Fageria, N. Fageria, 2007. Green manuring in crop production J. Plant Nutr., 30, 691–719.
  • 10. Gómez-Merino F.C., L.I. Trejo-Téllez, 2015. Biostimulant activity of phosphite in horticulture Sci. Hortic., 196, 82–90.
  • 11. Issayeva A., Yeshibayev A., Tleukeyeva A., Issaye Ye., 2021. Use of Phytomeliorant Plants for Waste Water Purification. Journal of Ecological Engineering, 22(9), 48–57, DOI: 10.12911/22998993/141481
  • 12. Issayeva A.U., R. Pankiewicz, A. Otarbekova, L. Rubtsova, 2020. Development of a method for the biological leaching of lanthanum, cerium and neodimium from polimetallic, phosphorus-containing and lead-zinc waste of Southern Kazakhstan, Experimental Biology, 82(1), 96–108.
  • 13. Mayer J., M. Zimmermann, K. Weggler, R. Reiser, D. Bürge, T. Bucheli, W. Richner, 2019. Valeurs limites pour les engrais de recyclage minéraux: le concept Suisse Rech. Agron. Suisse, 10, 4–11.
  • 14. Koppelaar R., H. Weikard, 2013. Assessing phosphate rock depletion and phosphorus recycling options, Global Environ. Change, 23, 1454–1466.
  • 15. Lambers, J.C. Clements, M.N. Nelson, 2013. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines ( Lupinus, Fabaceae ) Am. J. Bot., 100, 263–288.
  • 16. Marschner H., 2012. Marschner’s Mineral Nutrition of Higher Plants. Academic Press, 89.
  • 17. Piperd Z., Bau M., 2013. Normalized Rare Earth Elements in Water, Sediments, and Wine: Identifying Sources and Environmental Redox Conditions. American Journal of Analytical Chemistry, 4, 69–83.
  • 18. Tleukeyeva A., Alibayev N., Pankiewicz R., Issayeva A.U., 2021. The possibility of using green algae as fertilizer in agriculture, Reports of NAS RK, 1, 21–26.
  • 19. Yang F., Kubota F., Baba Y., Kamiya N., Goto M. 2013.Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 254, 79–88.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b50f6b8-9b13-48c7-9df6-427425dddae1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.