PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic simulation of a novel “broomstick” human forward fall model and finite element analysis of the radius under the impact force during fall

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents dynamic simulation and experimental identification of a human forward fall model describing the process of “falling like a broomstick” on the outstretched arms. The model implemented in Mathematica allows one to estimate time histories of the ground reaction force in different scenarios of the fall process. These time series are applied as time-varying load conditions to the numerical analysis of the human radial bone model created from the computed tomography data. Finally, the obtained numerical results indicate that the strain criterion seems to be more useful for estimating the radius fracture site in comparison to the stress criterion.
Rocznik
Strony
239--253
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • jan.awrejcewicz@p.lodz.pl
autor
  • jan.awrejcewicz@p.lodz.pl
autor
  • jan.awrejcewicz@p.lodz.pl
  • jan.awrejcewicz@p.lodz.pl
Bibliografia
  • 1. Bosisio M.R, Talmant M., Skalli W., Laugier P., Mitton D., 2007, Apparent Young’s modulus of human radius using inverse finite-element method, Journal of Biomechanics, 40, 2022-2028
  • 2. Burkhart T.A., Andrews D.M., Dunning C.E., 2013, Multivariate injury risk criteria and injury probability scores for fractures to the distal radius, Journal of Biomechanics, 46, 973-978
  • 3. Chiu J., Robinovitch S.N., 1998, Prediction of upper extremity impact forces during falls on the outstretched hand, Journal of Biomechanics, 31, 1169-1176
  • 4. Davidson P.L., Chalmers D.J., Stephenson S.C., 2006, Prediction of distal radius fracture in children, using biomechanical impact model and case-control data on playground free falls, Journal of Biomechanics, 39, 503-509
  • 5. DeGoede K.M., Ashton-Miller J.A., 2002, Fall arrest strategy affects peak hand impact force in a forward fall, Journal of Biomechanics, 35, 843-848
  • 6. DeGoede K.M., Ashton-Miller J.A., 2003, Biomechanical simulations of forward fall arrests: effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength, Journal of Biomechanics, 36, 413-420
  • 7. Edwards W.B., Troy K.L., 2012, Finite element prediction of surface strain and fracture strength at the distal radius, Medical Engineering and Physics, 34, 290-298
  • 8. Frykman G., 1967, Fracture of the distal radius including sequelae shoulder-hand-finger syndrome, disturbance in the distal radio-ulnar joint and impairment of nerve function, Acta Orthopaedica Scandinavica, 108, 1-153
  • 9. Gerritsen K.G.M., van den Bogert A.J., Nigg B.M., 1995, Direct dynamics simulation of the impact phase in heel-toe running, Journal of Biomechanics, 28, 661-668
  • 10. GrabCAD, 2016, Open CAD library (https://grabcad.com/library)
  • 11. Heijnen M.J.H., Rietdyk S., 2016, Falls in young adults: Perceived causes and environmental factors assessed with a daily online survey, Human Movement Science, 46, 86-95
  • 12. Johnell O., Kannis J.A., 2006, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures, Osteoporosis International, 17, 1726-1733
  • 13. Kim K.-J., Ashton-Miller J.A., 2009, Segmental dynamics of forward fall arrests: A system identification approach, Clinical Biomechanics, 24, 348-354
  • 14. Kroemer K.H.E., Kroemer H.J., Kroemer-Elbert K.E., 1997, Engineering Physiology: Bases of Human Factors/Ergonomics, Van Nostrand Reinhold, New York
  • 15. Neuert M.A.C., Austman R.L., Dunning C.E., 2013, The comparison of density-elastic modulus equations for the distal ulna at multiple forearm positions: a finite element study, Acta of Bioengineering and Biomechanics, 15, 37-43
  • 16. Nevitt M.C., Cummings S.R., 1993, Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures, Journal of the American Geriatrics Society, 41, 11, 1226-1234
  • 17. O’Neill T.W., Varlow J., Silman A.J., Reeve J., Reid D.M., Todd C., Woolf A.D., 1994, Age and sex influences on fall characteristics, Annals of the Rheumatic Diseases, 53, 773-775
  • 18. Palvanen M., Kannus P., Parkkari J., Pitkajarvi T., Pasanen M., Vuori I., Jarvinen M., 2000, The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls, Osteoporosis International, 11, 822-831
  • 19. Rho J.Y., Hobatho M.C., Ashman R.B., 1995, Relations of mechanical properties to density and CT number in human bone, Medical Engineering and Physics, 17, 347-355
  • 20. Robinovitch S.N., Feldman F., Yang Y., Schonnop R., Leung P.M., Sarraf T., SimsGould J., Loughin M., 2013, Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study, The Lancet, 381, 47-54
  • 21. Spadaro J.A., Werner F.W., Brenner R.A., Fortino M.D., Fay L.A., Edwards W.T., 1994, Cortical and trabecular bone contribute strength to the osteopenic distal radius, Journal of Orthopaedic Research, 12, 211-218
  • 22. Vellas B.J., Wayne S.J., Garry P.J., Baumgartner R.N., 1998, A two-year longitudinal study of falls in 482 community-dwelling elderly adults, The Journals of Gerontology, Series A, Biological Sciences and Medical Sciences, 53, 264-274
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b1f5a52-48d2-4905-91fd-fc31c9da52b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.