PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of biodegradable mulching on soil quality in stenotermal vegetable crop production

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ mulczowania z wykorzystaniem włóknin biodegradowalych na jakość gleby w uprawie warzyw ciepłolubnych
Konferencja
ECOpole’15 Conference (14-16.10.2015, Jarnoltowek, Poland)
Języki publikacji
EN
Abstrakty
EN
Mulching with plastic materials that cover the soil creates a physical barrier to soil water evaporation, preserves good soil structure, controls weeds and protects plants from soil contamination. The removal and disposal of non-recyclable and non-degradable plastic wastes after harvest is difficult and expensive. Using alternative biodegradable polymers as covers has been of increasing concern in recent years. This paper provides a presentation of results concerning the physical and chemical properties of soil under biodegradable nonwoven covers. Biodegradable PLA (polylactide) and Bionolle (an aliphatic polyester of butylene glycol and succinic and adipic acid) films covering the soil on tomato and cucumber fields were evaluated to estimate the changes in several physical soil properties including bulk density, water field capacity, wet soil aggregate stability and chemical soil properties including soil acidity, EC, organic matter and soil mineral status. Favourable changes in the physical structure of soil can be achieved by mulching the soil surface of biodegradable polymers. The obtained results show that using covers with PLA and Bionolle biofilm significantly increased the amount of large aggregates and decreased the percentage of the smallest size aggregates in soils; however, the observed effects were strongly affected by weather conditions. Under wet conditions, mulching increased the soil bulk density and decreased soil water capacity. The results of soil chemical analyses demonstrated the low impact of treatments on macro- and microelement concentration measured after tomato and cucumber harvesting. Soils under PLA and Bionolle covers had smaller low ion concentrations in relation to bare soils.
PL
Mulcze z tworzyw sztucznych tworzą fizyczną barierę dla parowania wody, pozwalają zachować dobrą strukturę gleby, kontrować zachwaszczenie oraz chronią rośliny przed zanieczyszczeniami glebowymi. Usuwanie i unieszkodliwianie po zbiorach odpadów z tworzyw sztucznych nienadających się do recyklingu i niepodlegających degradacji jest trudne i kosztowne. W ostatnich latach stosowanie alternatywnych włóknin biodegradowalnych jako mulczy lub okryć w uprawie roślin cieszy się coraz większym zainteresowaniem. Praca jest prezentacją wyników dotyczących właściwości fizycznych i chemicznych gleb mulczowanych biodegradowalnymi włókninami. W badaniach oceniano zmiany niektórych fizycznych właściwości gleby, takich jak: gęstość objętościowa, pojemność wodna i wodoodporność agregatów glebowych po uprawie pomidora i ogórka. Do ściółkowania gleby wykorzystano włókninę PLA (polilaktyd) i Bionolle (poliester butylenu, alifatycznego glikolu, kwasu bursztynowego i adypinowego). Chemiczne właściwości gleby oceniano, oznaczając w nich odczyn, stężenie soli, zawartość węgla organicznego, dostępne dla roślin składniki pokarmowe oraz zawartość metali ciężkich. Okrywanie powierzchni gleby włókninami z polimerów biodegradowalnych wpłynęło korzystnie na strukturę gleby. Biowłókniny PLA i Bionolle zwiększały ilość makroagregatów wodoodpornych, a zmniejszały odsetek najmniejszych agregatów w glebie, jednak obserwowane zmiany były silnie modyfikowane poprzez warunki atmosferyczne w poszczególnych latach prowadzenia badań. W bardzo mokrym roku okrywanie gleby zwiększało jej gęstość objętościową oraz zmniejszało pojemność wodną. Mulczowanie gleby z użyciem biodegradowalnych włóknin nie wpływało znacząco na zawartość składników pokarmowych i metali ciężkich w glebie. Obserwowano nieznaczny spadek EC w glebach pod ściółkami w porównaniu do gleby nieokrywanej.
Rocznik
Strony
425--439
Opis fizyczny
Bibliogr. 47 poz., tab.
Twórcy
  • Institute of Plant Biology and Biotechnology, Unit of Plant Nutrition, Department of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland, phone +48 12 662 52 38
autor
  • Department of Vegetables and Herb Plants, Department of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425 Kraków, Poland, phone +48 12 662 52 38
Bibliografia
  • [1] Lamont WJ. Plastic mulches for the production of vegetable crops. Hort Tech. 1993;3:35-39. http://horttech.ashspublications.org/content/3/1/35.full.pdf.
  • [2] Krochta JM, De Mulder-Johnston CLC. Biodegradable polymers from agricultural products. Agricultural Materials as Renewable Resources. ACS Symposium Series. 1996;647:120-140. DOI: 10.1021/bk-1996-0647.ch009.
  • [3] Plackett D. Biopolymers: New Materials for Sustainable Films and Coatings. Wiley&Sons, United Kingdom; 2011. DOI: 10.1002/9781119994312.fmatter.
  • [4] Green DS, Kruger EL, Stanosz GR. Effects of polyethylene mulch in a short-rotation, poplar plantation vary with weed-control strategies, site quality and clone. Forest Ecol Manage. 2003;173:251-260. DOI: 10.1016/S0378-1127(02)00003-8.
  • [5] Greer L, Dole JM. Aluminum foil, aluminum-painted, plastic and degradable mulches increase yields and decrease insect-vectored viral diseases of vegetables. Hort Tech. 2003;13:276-284. http://horttech.ashspublications.org/content/13/2/276.full.pdf
  • [6] Moreno MM, Moreno A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop. Sci Hort. 2008;116:256-263. DOI: 10.1016/j.scienta.2008.01.007.
  • [7] Moreno MM, Moreno A, Mancebo I. Comparison of different mulch materials in a tomato (Solanum lycopersicum L.) crop. Spanish J Agr Res. 2009;7:454-464. DOI: 10.5424/sjar/2009072-1500.
  • [8] Anzalone A, Cirujeda A, Aibar J, Pardo G, Zaragoza C. Effect of biodegradable mulch materials on weed control in processing tomatoes. Weed Technol. 2010;24(3):369-377. DOI: 10.1614/WT-09-020.1.
  • [9] Olsen JK, Gounder RK. Alternatives to polyethylene mulch film-a field assessment of transported materials in capsicum (Capsicum annum L). Austral J Expt Agr. 2001;41:93-103. DOI: 10.1071/EA00077.
  • [10] Chiellini E, Solaro R. Recent advances in biodegradable polymers and plastics. 7thWorld Conference on Biodegradable Polymers and Plastics, Italy 2003. Book Abstracts 2003 International Union of Pure and Applied Chem. DOI: 10.1002/masy.200350701.
  • [11] Kasirajan S, Ngouajio M. Agron. Polyethylene and biodegradable mulches for agricultural applications: a review. Sustain Dev. 2012;32:501-529. DOI: 10.1007/s13593-012-0132-7.
  • [12] Brown RP. Polymers in agriculture and horticulture. iSmithers Rapra Publishing 2004. http://www.smithersrapra.com/ products/books/browse-by-category/review-reports/polymers-in-agricultureand- horticulture.
  • [13] Malinconico M, Immirzi B, Santagata G, Schettini E, Vox G, Mugnozza SG. An overview on innovative biodegradable materials for agricultural applications. In: Moeller HW, editor. Progress in Polymer Degradation and Stability Research. New York: Nova Science; 2008. https://www.researchgate.net/publication/260017619_An_overview_on_innovative_biodegradable_materials_for_agricultural_applications.
  • [14] Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, et al. Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. Hort Sci. 2012;47(9):1270-1277. http://hortsci.ashspublications.org/content/47/9/1270.full.
  • [15] Ren J. Biodegradable Polylactic Acid: Synthesis, Modification, Processing and Application. London. Springer Publisher 2011. DOI: 10.1007/978-3-642-17596-1.
  • [16] Stevens ES. What makes green plastics green? Biocycle. 2003;44(3):24-27. http://www.bpiworld.org/resources/documents/biocycle_green_plastics.pdf.
  • [17] Rudnik E. Compostable Polymer Materials. Amsterdam: Elsevier Publishing; 2008. DOI: 10.1016/B978-008045371-2.50004-4.
  • [18] Bronic CJ, Lal R. Soil structure and management: a review. Geoderma. 2005;124:3-22. DOI: 10.1016/j.geoderma.2004.03.005.
  • [19] Caravaca F, Lax A, Albaladejo J. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil Till Res. 2004:78:83-90. DOI: 10.1016/j.still.2004.02.010.
  • [20] Díaz-Zorita M, Perfect E, Grove JH. Disruptive methods for assessing soil structure. Soil Till Res. 2002;64:3-22. DOI: 10.1016/S0167-1987(01)00254-9.
  • [21] Li Z, Zhang RH, Wang XJ, Wang JP, Zhang CP, Tian CY. Carbon dioxide fluxes and concentrations in a cotton field in north western China: Effects of plastic mulching and drip irrigation. Pedosphere. 2011;21:178-185. DOI: 10.1016/S1002-0160(11)60116-1.
  • [22] Li F, Liu C, Yang Y, Bi X, Liu J. Effect of mini greenhaose on the transortation of heavy metals. Chinese J Geochem. 2006;25:212. DOI: 10.1007/BF02840154.
  • [23] Filippi F, Magnani G, Guerrini S, Ranghino F. Agronomic evaluation of green biodegradable mulch on melon. Italian J Agron. 2011;6:111-116. DOI: 10.4081/ija.2011.e18.
  • [24] Laverde G J. Plastic Film Sheeting. 2002;18(4):269-277. DOI: 10.1177/8756087902034748.
  • [25] Ngouajio M, Auras R, Fernandez RT, Rubino M, Counts JW, Kijchavengkul T. Field performance of aliphatic-aromatic copolyester biodegradable mulch films in a fresh market tomato production system. Hort Tech. 2008;18(4):605-610. http://horttech.ashspublications.org/content/18/4/605.full.
  • [26] Minuto G, Guerrini S, Versari M, Pisi L, Tinivella F, Bruzzone C, et al. Use of biodegradodable mulching in vegetable production. IFOAM Organic World Congress 2008 - Book Abstracts 2008.
  • [27] Martin-Closas L. Biodegradable mulching in an organic tomato production system. Acta Hort. 2008;767:267-273. DOI: 10.17660/ActaHortic.2008.767.28.
  • [28] Kerven GL, Menzies NW, Geyer MD. Soil carbon determination by high temperature combustion - A comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Commun. Soil Sci Plant Anal. 2000;31:1935-1939. DOI: 10.1080/00103620009370551.
  • [29] Ostrowska A, Gawliński S, Szczubiałka Z. Soil and Plant Analysis Procedures. Warszawa: Institute Environ Protect; 1991.
  • [30] PN-R-04032. 1998. Soils and mineral materials. Soil sampling and granulometric analysis. Warszawa: Polish Committee for Standarization. sklep.pkn.pl/pn-r-04032-1998p.html.
  • [31] Yoder RE. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J Am Soc Agron. 1936;28:337-351. https://dl.sciencesocieties.org/publications/aj/abstracts/28/5/AJ0280050337?access=0&view=pdf.
  • [32] Nowosielski O. Fertilizer Recommendations for Horticulture Crops. Warszawa: PWRiL; 1988.
  • [33] PN-EN ISO 13395:2001. Water quality - Determination of nitrite and nitrate nitrogen and them sum using flow analysis (CFA and FIA) spectrometric detection. Warszawa: Polish Committee for Standarization.
  • [34] Reynolds WD, Drury CF, Yang XM, Tan CS. Optima soil physical quality inferred through structural regression and parameter interactions. Geoderma. 2008;146:466-474. DOI: 10.1016/j.geoderma.2008.06.017.
  • [35] Reynolds WD, Drury CF, Yang XM, Fox CA, Tan CS, Zhang TQ. Land management effects on the nearsurface physical quality of a clay loam soil. Soil Tillage Res. 2007;96:316-330. DOI: 10.1016/j.still.2007.07.003.
  • [36] Ndubuisi MC. Physical properties of an Ultisol under plastic film and no-mulches and their effect on the yield of maize. J Am Sci. 2009;5:25-30. DOI: 10.7537/j.issn.1545-1003.
  • [37] Nimmo JR, Perkins KS. Aggregate stability and size distribution. In: Dane JH, Topp GC. Methods of Soil Analysis. Part 4 - Physical methods. Madison, Wisconsin: Soil Sci Society of America; 2002:317-328.
  • [38] Candan F, Broquen P. Aggregate stability and related properties in NW Patagonian Andisols. Geoderma.2009;154:42-47. DOI: 10.1016/j.geoderma.2009.09.010.
  • [39] Passioura JB. Soil conditions and plant growth. Plant Cell Environ. 2002;25(2):311-318. DOI: 10.1046/j.0016-8025.2001.00802.x.
  • [40] Jastrow JD, Miller RM, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem. 1998;30:905-916. DOI: 10.1016/S0038-0717(97)00207-1.
  • [41] Domagała-Świątkiewicz I, Siwek P. The effect of direct covering with biodegradable nonwoven film on the physical and chemical properties of soil. Pol J Environ Stud. 2013;22(3):35-42. http://www.pjoes.com/pdf/22.3/Pol.J.Environ.Stud.Vol.22.No.3.667-674.pdf
  • [42] Six J, Paustian K, Elliott ET, Combrink C. Soil structure and soil organic matter: I. Distribution of aggregate size classes and aggregate associated carbon. Soil Sci Soc Am J. 2000;64:681-689. DOI: 10.2136/sssaj2000.642681x.
  • [43] Ham JM, Huitenberg GJ, Lamont WJ. Optical properties of plastic mulches affect the field temperature regime. J Am Soc Hort Sci. 1993;118:188-193. http://journal.ashspublications.org/content/118/2/188.full.pdf+html.
  • [44] Zhang XC, Norton LD. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J Hydrol. 2002;260:194-205. DOI: 10.1016/S0022-1694(01)00612-6.
  • [45] Briedis C, Sá JC, Caires EF, Navarro J, Inagaki TM, Boer A, et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma. 2012;170:80-88. DOI: 10.1016/j.geoderma.2011.10.011.
  • [46] Bolan NS, Naidu R, Syers JK, Tillman RW. Surface charge and solute interactions in soils. Adv Agron. 1999;67:87-140. DOI: 10.1016/S0065-2113(08)60514-3.
  • [47] Li F, Liu C, Yang Y, Chen X, Jiang Q. Effect of plastic mulching on translocation characteristics of copper and zinc in soil and Chinese cabbage (BrassicBrassica chinensis) system. J Ecol Rural Environ. 2009;25:54-58. DOI: CNKI:SUN:NCST.0.2009-02-014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b0cc9b8-0fbe-491a-aa4b-fbfabbc0d99f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.