PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusion of Cd(II), Pb(II) and Zn(II) on calcium alginate beads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effective diffusion coefficients (De) for different heavy-metal salts: Cd, Pb, Zn in calcium alginate beads were determined. Their values depend on the metal type, anion from the metal salt, and the alginate content in the beads. The results of calculations indicate a decrease in the values of De, caused by an increase in the alginate content in the alginate sorbent beads. This is in agreement with the mechanism of the diffusion process taking place in porous carriers. Experimental data were found to be in good agreement with the mathematical model, as indicated by high values of the correlation coefficient.
Słowa kluczowe
Rocznik
Tom
Strony
19--34
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
  • Zakład Inżynierii Chemicznej i Bioprocesowej, Wydział Technologii i Inżynierii Chemicznej, Uniwersytet Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich, ul. Seminaryjna 3, 85-326 Bydgoszcz
  • Department of Chemical and Bioprocess Engineering Faculty of Chemical Technology and Engineering University of Technology and Life Sciences in Bydgoszcz
  • Department of Chemical and Bioprocess Engineering Faculty of Chemical Technology and Engineering University of Technology and Life Sciences in Bydgoszcz
Bibliografia
  • Aksu Z., Sag Y., Kutsal T. 1992. The Biosorption of copper(II) by C. vulgaris and Z. ramigera. Environmental Technology, 13: 579-586, doi: 10.1080/09593339209385186.
  • Apel M.L., Torma A.E. 1993. Determination of kinetics and diffusion coefficients of metal sorption on Ca-alginate beads. The Canadian Journal of Chemical Engineering,71: 652-656, doi: 10.1002/cjce.5450710419.
  • Araujo M.M., Teixeira J.A. 1997. Trivalent chromium sorption on alginate beads. International Biodeterioration and Biodegradation, 40: 63-74, doi: 10.1016/s0964-8305(97)00064-4.
  • Arnaud J.-P., Lacroix C., Castaigne F. 1992. Counterdiffusion of lactose and lactic acid in κ-carrageenan/locust bean gum gel beads with or without entrapped lactic acid bacteria. Enzyme and Microbial Technology, 14: 715–724, doi: 10.1016/0141-0229(92)90111-Z.
  • Arica M.Y., Bayramoglu G., Yilmaz M., Bektas S., Genc O. 2004. Biosorption of Hg2+, Cd2+, and Zn2+ by ca-alginate and immobilized wood-rotting fungus Funalia Trogii. Journal of Hazardous Materials, B109: 191-199.
  • Chand R., Narimura K., Kawakita H., Ohto K., Watari T., Inoue K. 2009. Grape waste as a biosorbents for removing Cr(VI) from aqueous solution. Journal of Hazardous Materials, 163: 245-250, doi: 10.1016/j.jhazmat.2008.06.084.
  • Chen D., Lewandowski Z., Roe F., Surapaneni P. 1993. Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnology and Bioengineering, 41: 755-760, doi: 10.1002/bit.260430212.
  • Chen J., Tendeyong F., Yiacoumi S. 1997. Equilibrium and kinetic studies of copper ion uptake by calcium alginate. Enviromental Science and Technology, 31: 1433-1439, doi: 10.1021/es9606790.
  • Chojnacka K. 2010. Biosorption and Bioaccumulation – The prospects for practical applications. Environment International, 36: 299-307, doi: 10.1016/j.envint.2009.12.001.
  • Davis T.A., Volesky B., Mucci A. 2003. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res, 37: 4311– 4330.
  • Deans J.R., Dixon B.G. 1992. Uptake of Pb2+ and Cu2+ by novel biopolymers. Water Research, 26: 469-472, doi:10.1016/0043-1354(92)90047-8.
  • Deze E.G., Papageorgiou S.K., Favvas E.P., Katsaros F.K. 2012. Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption. Chemical Engineering Journal, 209: 537–546.
  • Dhakal R.P., Ghimire K.N., Inoue K. 2005. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy, 79: 182-190, doi: 10.1016/j. hydromet.2005.06.007.
  • Demey H., Tria S.A., Soleri R., Guiseppi-Elie A., Bazin I. 2017. Sorption of his-tagged Protein G and Protein G onto chitosan/divalent metal ion sorbent used for detection of microcystin-LR. Environmental Science and Pollution Research, 24(1): 15-24, doi: 10.1007/s11356-015-5758-y.
  • Demey H., Vincent T., Guibal E. 2018a. A novel algal-based sorbent for heavy metal removal. Chemical Engineering Journal, 332: 582-595. DOI:10.1016/j.cej.2017.09.083.
  • Demey H., Lapo B., Ruiz M., Fortuny A., Marchand M., Sastre A.M. 2018b. Neodymium Recovery by Chitosan/Iron(III) Hydroxide [ChiFer(III)] Sorbent Material: Batch and Column Systems. Polymers 10(2): 204, doi: 10.3390/polym10020204.
  • Ecles H. 1999. Treatment of metal-contaminated wastes: why select a biological process? Trends in Biotechnology, 17: 462-465, doi: 10.1016/S0167-7799(99)01381-5.
  • Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. 1998. In Document N◦ 01998L0083-20151027. European Commission, European Union, Brussels, Belgium.
  • Figueira M.M., Volesky B., Ciminelli V.S.T. 2000. Biosorption of metals in brown seaweed biomass. Water Research, 34: 196-204, doi: 10.1016/S0043-1354(99)00120-7.
  • Ghimire K.N., Inoue K., Yamaguchi H., Makino K., Miyajima T. 2003. Adsorptive separation of arsenate and aresnite anions from aqueous medium by using orange waste. Water Research, 37: 4945-4953, doi: 10.1016/j.watres.2003.08.029.
  • Hu M.Z.C, Norman M.J., Faison B.D., Reeves M.E. 1996. Biosorption of uranium by pseudomonas aeruginosa strain csu: characterization and comparison studies. Biotechnology and Bioengineering, 51: 237-247, doi: 10.1002/(SICI)1097-0290(19960720)51:23.0.CO;2-J.
  • Ibanez J.P., Umetsu Y. 1999. Uptake of copper from extremely dilute solutions by alginate sorbent material: an alternative for enviromental control. Proceedings Of Copper 99-Cobre 99 International Environment Conference, p. 387-397.
  • Ibanez J.P., Umetsu Y. 2000. Removal of heavy metal ions by using alginate beads. Proceedings V International Conference On Clean Technologies For The Mining Industry, Santiago, Chile, p. 49-58.
  • Iqbal M., Saeed A. 2002. Removal of heavy metals from contaminated water by petiolar felt-sheath of palm. Environmental Technology, 23: 1091–1098.
  • Jang K.L., Geesey G.G., Lopez S.L., Eastman S.L., Wichlacz P.L. 1990. Sorption equilibrium of copper by partially-coagulated calcium alginate gel. Chemical Engineering Communication, 96: 63-77.
  • Jang K.L., Lopez S.L., Eastman S.L., Pryfogle P. 1991 Recovery of copper and cobalt by biopolymer gels. Biotechnology and Bioengineering, 37: 266-273.
  • Jang K.L. 1994. Diffusivity of Cu2+ in calcium alginate gel beads. Biotechnology and Bioengineering, 43: 183-185, doi:10.1002/bit.260410710.
  • Jang L.K., Nguyen D., Geesey G.G. 1995. Selectivity of alginate gel for Cu vs Co. Water Research, 29: 307-313, doi:10.1016/0043-1354(94)E0090-S.
  • Jang L.K., Nguyen D., Geesey G.G. 1995. Effect of pH on the absorption of Cu(II) by alginate gel. Water Research, 29: 315-321, doi:10.1016/0043-1354(94)E0091-J.
  • Jeon C., Park J.Y., Yoo Y.J. 2002. Characteristics of metal removal using carboxylated alginic acid. Water Research, 36: 1814-1824, doi:10.1016/S0043-1354(01)00389-X.
  • Kawai S., Murata K. 2016. Biofuel production based on carbohydrates from both brown and red macroalgae: Recent developments in key biotechnologies. International Journal of Molecular Sciences, 17: 145.
  • Klimiuk E., Kuczajowska-Zadrożna M. 2002. The effect of poly(vinyl alcohol) on cadmium adsorption and desorption from alginate adsorbents. Polish Journal of Environmental Studies, 11(4): 375-384.
  • Konishi Y., Shimaoka J., Asai S. 1998. Sorption of rare-earth ions on biopolymer gel beads of alginic acid. Reactive and Functional Polymers, 36: 197-206.
  • Kratochvil D., Volesky B. 1998. Advances in the biosorption of heavy metals. Trends in Biotechnology, 16: 291-300, doi: 10.1016/S0167-7799(98)01218-9.
  • Kwiatkowska-Marks S., Wójcik M., Kopiński L. 2011. Biosorption of heavy metals on alginate beads. Przemysł Chemiczny, 90(10): 1924-1930.
  • Kwiatkowska-Marks S., Kopiński L., Wójcik M. 2011. Konduktometryczne wyznaczanie efektywnego współczynnika dyfuzji jonów miedzi w granulkach alginianowych. Inżynieria i Aparatura Chemiczna, 50(6): 9-11.
  • Lai Y.-L., Annadurai G.Y, Huang F.-C., Lee J.-F. 2008. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresource Technology, 99: 6480-6487, doi: 10.1016/j.biortech.2007.11.041.
  • Lewandowski Z., Roe F. 1994. Communication to the editor. Diffusivity of Cu2+ in calcium alginate gel beads: recalculation. Biotechnology and Bioengineering, 43: 186-187, doi:10.1002/ bit.260430213.
  • Meena A.K., Kadirvelu K., Mishra G..K, Rajagopal C., Nagar P.N. 2008. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Journal of Hazardous Materials, 150: 619-625, doi: 10.1016/j.jhazmat.2007.05.011.
  • Nastaj J., Przewłocka A., Rajkowska-Myśliwiec M. 2016. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Polish Journal of Chemical Technology, 18: 81-87, doi: 10.1515/pjct-2016-0052.
  • Nestle N.F.E.I., Kimmich R. 1996. NMR imaging of heavy metal absorption in alginate, immobilized cells and kombu algal biosorbents. Biotechnology and Bioengineering, 51: 538-543, doi:10.1002/ (SICI)1097-0290(19960905)51:53.3.CO;2-R.
  • Papageorgiou S.K., Katsaros F.K., Kouvelos E.P., Nolan J.W., Le Deit H., Kanellopoulos N.K. 2006. Heavy metal sorption by calcium alginate beads from Laminaria Digitata. Journal of Hazardous Materials, B137: 1765-1772, doi:10.1016/j.jhazmat.2006.05.017.
  • Papageorgiou S.K., Kouvelos E.P., Katsaros F.K. 2008. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions. Desalination, 224: 293-306, doi:10.1016/j.desal.2007.06.011.
  • Plazinski W. 2012. Sorption of lead, copper, and cadmium by calcium alginate. Metal binding stoichiometry and the pH effect. Environmental Science and Pollution Research, 19: 3516–3524, doi:10.1007/s11356-012-0913-1.
  • Rincon J., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A. 2005. Biosorption of heavy metals by chemically activated alga Fucus Vesiculosus. Journal of Chemical Technology and Biotechnology, 80: 1403-1407, doi:10.1002/jctb.1342.
  • Ruiz M., Tobalina C., Demey-Cedeño H., Barron-Zambrano J.A., Sastre A.M. 2013. Sorption of boron on calcium alginate gel beads. Reactive & Functional Polymers, 73: 653–657, doi:10.1016/j.reactfunctpolym.2013.01.014.
  • Sobieski W., Lipiński S. 2017. The analysis of the relations between porosity and tortuosity in granular beds. Technical Sciences, 20(1): 75–85.
  • Somers W., Van’t Reit K., Rozie H., Rombouts F.M., Visser J. 1989. Isolation and purification of endo-polygalacturonase by affinity chromatography in a fluidized bed reactor. The Chemical Engineering Journal, 40: B7-19, doi:10.1016/0300-9467(89)80046-2.
  • Wang S., Vincent T., Faur C., Guibal E. 2016. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II). International Journal of Molecular Sciences, 17: 1453, doi:10.3390/ijms17091453.
  • Guidelines for drinking – Water quality. 2011. Fourth ed. World Health Organization, Geneva.
  • Veglio F., Beolchi F. 1997. Removal of metals by biosorption: a review. Hydrometallurgy, 44: 301-316.
  • Veglio F., Esposito A., Reverberi A.P. 2002. Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy, 65: 43-57, doi:10.1016/S0304-386X(02)00064-6.
  • Volesky B., Holan Z.R. 1995. Biosorption of heavy metals. Biotechnology Progress, 11: 235-250, doi: 10.1021/bp00033a001.
  • Volesky B. 2001. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59: 203-216, doi:10.1016/S0304-386X(00)00160-2.
  • Volesky B. 2003. Sorption and Biosorption. Bv-Sorbex, Inc., St.Lambert, Quebec.
  • Volesky B. 2003. Biosorption process simulation tools. Hydrometallurgy, 71: 179-190, doi:10.1016/ S0304-386X(03)00155-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-38083921-ffc1-49c0-8b4d-c0098465097b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.