Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the experimental results of a new proof mass actuator for the implementation of velocity feedback control loops to reduce the flexural vibration of a thin plate structure. Classical proof mass actuators are formed by coil–magnet linear motors. These actuators can generate constant force at frequencies above the fundamental resonance frequency of the spring–magnet system, which can be used to efficiently implement point velocity feedback control loops. However, the dynamics of the spring–magnet system limit the stability and control performance of the loops when the actuators are exposed to shocks. The proof mass actuator investigated in this paper includes an additional flywheel element that improves the stability of the velocity feedback loop both by increasing the feedback gain margin and by reducing the fundamental resonance frequency of the actuator. This paper is focused on the stability and control performance of decentralized velocity feedback control loops.
Rocznik
Tom
Strony
art. no. e144605
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Silencions, Bierutowska 57-59, 51-315 Wrocław, Poland
autor
- DPIA, Università di Udine, Via delle Scienze 206, 33100, Udine, Italy
Bibliografia
- [1] C.G. Diaz and P. Gardonio, “Feedback control laws for proof-mass electro-dynamic actuators,” J. Smart Mater. Struct., vol. 16, pp. 1766–83, 2007.
- [2] C.G. Diaz, C. Paulitsch, and P. Gardonio, “Smart panel with active damping units. Implementation of decentralized control,” J. Acoust. Soc. Am., vol. 124, pp. 898–910, 2008.
- [3] M. Balas, “Direct velocity feedback control of large space structures,” J. Guid. Control Dyn., vol. 2, no. 3, pp. 252–253, 1979.
- [4] D.W. Miller and E.F. Crawley, “Theoretical and experimental investigation of space-realizable inertial actuation for passive and active structural control,” J. Guid. Control Dyn., vol. 11, no. 5, pp. 449–458, 1988.
- [5] F. Fahy and P. Gardonio, Sound and structural vibration. Radiation, Transmission and Response, 2nd ed., Academic Press, Oxford, 2007.
- [6] H. Politansky and W.D. Pilkey, “Suboptimal feedback vibration control of a beam with a proof-mass actuators,” J. Guid. Control Dyn., vol. 12, pp. 691–697, 1989.
- [7] D.C. Zimmerman and D.J. Inman, “On the nature of the inter-action between structures and proof mass actuators,” J. Guid. Control Dyn., vol. 13, no. 1, pp. 82–88, 1990.
- [8] A. Preumont, Vibration Control of Active Structures, Kluwer Academic, Dordrecht, 2002.
- [9] C. Paulitsch, Vibration control with electrodynamic actuators, VDI Verlag, Düsseldorf, 2005.
- [10] A. Kras and P. Gardonio, “Active vibration control unit with a flywheel inertial actuator,” J. Sound Vib., vol. 464, p. 114987, 2020.
- [11] A. Preumont, Mechatronic dynamics of electromechanical and piezoelectric systems, Springer, Dordrecht, 2006.
- [12] C. Paulitsch, P. Gardonio, S.J. Elliott, P. Sas, and R. Boonen, “Design of a lightweight, electrodynamic, inertial actuator with integrated velocity sensor for active vibration control of a thin lightly-damped panel,” Proc. of the ISMA 2004 Int. Conf. Leuven, 2004, pp. 239–53.
- [13] G. Parmar, D.B. Hiemstra, Y. Chen, and S. Awtar, “A moving magnet actuator for large range nanopositioning,” Proceedings of the ASME Conference, 2001, pp. 41–48.
- [14] S. Cinquemani, G. Cazzulani, A. Costa, and F. Resta, “Design of a stand-alone active damper for distributed control of vibration,” Proc. SPIE 9799 Active and Passive Smart Structures and Integrated Systems, pp. 1–8, 2016.
- [15] D.K. Lindner, T.P. Celano, and E.N. Ide, “Vibration suppression using a proofmass actuator operating in stroke/force saturation,” J. Vib. Acoust., vol. 113, pp. 423–33, 1991.
- [16] D.K. Lindner, G.A. Zvonar, and D. Borojevic, “Performance and control of proof-mass actuators accounting for stroke saturation,” J. Guid. Control Dyn., vol. 17, no. 5, pp. 1103–1108, 1994.
- [17] N. Alujević, H. Wolf, P. Gardonio, and I. Tomac, “Stability and performance limits for active vibration isolation using blended velocity feedback,” J. Sound Vib., vol. 330, no. 21, pp. 4981–4997, 2011.
- [18] L. Benassi and S.J. Elliott, “Active vibration isolation using an inertial actuator with local displacement feedback control,” J. Sound Vib., vol. 278, no. 4-5, pp. 705–724, 2004.
- [19] L. Benassi, S.J. Elliott, and P. Gardonio, “Active vibration isolation using an inertial actuator with local force feedback control,” J. Sound Vib., vol. 276, no. 1–2, pp. 157–179, 2004.
- [20] J. Rohlfing, P. Gardonio, and S.J. Elliott, “Feedback compensator for control units with proof-mass electrodynamic actuators,” J. Sound Vib., vol. 331, no. 15, pp. 3437–3450, 2012.
- [21] M.D. Borgo, M.G. Tehrani, and S.J. Elliott, “Nonlinear control and stability analysis of a stroke limited inertial actuator in velocity feedback,” Proc. of the 9th European Nonlinear Dynamics Conference ENOC, 2017, pp. 1–10.
- [22] M.C. Smith, “Synthesis of mechanical networks: the inerter,” IEEE Trans. Autom. Control, vol. 47, no. 10, pp. 1648–1662, 2002.
- [23] P. Brzeski, M. Lazarek, and P. Perlikowski, “Experimental study of the novel tuned mass damper with inerter which enables changes of inertance,” J. Sound Vib., vol. 404, pp. 47–57, 2017.
- [24] A. Kras and P. Gardonio, “Velocity feedback control with a flywheel proof mass actuator,” J. Sound Vib., vol. 402, pp. 31–50, 2017.
- [25] N. Alujević, D. Čakmak, H. Wolf, and M. Jokić, “Passive and active vibration isolation systems using inerter,” J. Sound Vib., vol. 418 pp.163–183, 2018.
- [26] M. Zilletti, “Feedback control unit with an inerter proof-mass electrodynamic actuator,” J. Sound Vib., vol. 369, pp. 16–28, 2016.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-37e2d738-796f-462f-8d07-452c7d2b8f11