PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of methanol-containing wastewater at gas condensate production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was to assess the impact of industrial wastewater on the concentration of methanol in the considered section of the Ob River basin, present proposals for the implementation of a new treatment system and analyse the implementation results. On the basis of the results of the analysis of the known methods for reducing the concentration of methanol in water, a new technological scheme for post-treatment of effluents using biological treatment with methylotrophic Methylomonas methanica Dg bacteria was proposed. The calculation of the dilution of treated wastewater using the “NDS Ecolog” program was carried out on the basis of the detailed calculation method of Karaushev, the results of which showed a decrease in the concentration of methanol in the control section to 0.0954 mg∙dm-3 (permissible concentration is 0.1 mg∙dm-3). During the period of the flood of the Glukhaya channel, it ceases to be a separate water body and, in fact, becomes part of the flood channel of the Ob River. Certain parts of the flooded areas, due to elevation changes, communicate with the channel only during a short period of time when the water level rises, i.e. 3-5 weeks during the flood period, and in fact remain isolated reservoirs for the rest of the time, potentially acting as zones of accumulation and concentration of pollutants.
Wydawca
Rocznik
Tom
Strony
84--93
Opis fizyczny
Bibliogr. 57 poz., fot., rys., tab.
Twórcy
  • Saint-Petersburg Mining University, Faculty of Mining Engineering, 21st Line of Vasilyevsky island, 2, 199106, Saint-Petersburg, Russia
  • Saint-Petersburg Mining University, Faculty of Mining Engineering, 21st Line of Vasilyevsky island, 2, 199106, Saint-Petersburg, Russia
  • Lublin University of Technology, Faculty of Environmental Engineering, Poland
Bibliografia
  • ALI SHAH F., MAHMOOD Q., MAROOF SHAH M., PERVEZ A., AHMAD ASAD S. 2014. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. The Scientific World Journal. Vol. 2014, 183752. DOI 10.1155/2014/183752.
  • BABENKO D.A., PASHKEVICH M.A., ALEKSEENKO A.V. 2020. Water quality management at the tailings storage facility of the Gaisky Mining and Processing Plant. Rocznik Ochrona Środowiska. Vol. 22(1) p. 214–225.
  • BAYKALOVA A.S., AKOPYAN E.K., AREF’YEV S.P. 2013. Krasnaya kniga Khanty-Mansiyskogo avtonomnogo okruga [Red Book of the Khanty-Mansiysk Autonomous Okrug – Ugra: Animals, plants, fungi. 2 nd ed. Moskva. Basco. ISBN 978-5-91356-224-1 pp. 460.
  • BONDAREV E.А., ROZHIN I.I., ARGUNOVA K.K. 2018. Moisture content of natural gas in bottom hole zone. Journal of Mining Institute. Vol. 233 p. 492–497. DOI 10.31897/pmi.2018.5.492.
  • BRENCHUGINA M.V., BUINOVSKIY A.S., ISMAGILOV Z.R., KUZNETSOV V.V. 2007. Development of technology for purification of industrial water from gas condensate fields from methanol. Bulletin of the Tomsk Polytechnic University. Vol. 311(3) p. 64–68.
  • CHEIN R.-Y., CHEN W.-H., CHYUAN ONG H., LOKE SHOW P., SINGH Y. 2021. Analysis of methanol synthesis using CO 2 hydrogenation and syngas produced from biogas-based reforming processes. Chemical Engineering Journal. Vol. 426, 130835. DOI 10.1016/j.cej.2021.130835.
  • CHEN T., ZHENG H., HAMILTON S., RODRIGUES S., GOLDING S.D., RUDOLPH V. 2017. Characterisation of bioavailability of Surat Basin Walloon coals for biogenic methane production using environmental microbial consortia. International Journal of Coal Geology. Vol. 179 p. 92–112. DOI 10.1016/j.coal.2017.05.017.
  • CLAUSEN L.R., HOUBAK N., ELMEGAARD B. 2010. Technoeconomic analysis of a methanol plant based on gasification of biomass and electrolysis of water. Energy. Vol. 35(5) p. 2338–2347. DOI 10.1016/j.energy.2010.02.034.
  • DAVANI B., INGRAM J., GARDEA J.L., EICEMAN G.A. 1986. Organic compounds in soils and sediments from unlined waste disposal pits for natural gas production and processing. Water, Air, & Soil Pollution. Vol. 27(3–4) p. 267–276. DOI 10.1007/BF00649408.
  • DEMIRBAS A. 2008. Biomethanol production from organic waste materials. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. Vol. 30(6) p. 565–572. DOI 10.1080/15567030600817167.
  • DIDMANIDZE O.N., AFANASEV A.S., KHAKIMOV R.T. 2020. Mathematical model of the liquefied methane phase transition in the cryogenic tank of a vehicle. Journal of Mining Institute. Vol. 243(3) p. 337–347. DOI 10.31897/PMI.2020.3.337.
  • DVOYNIKOV M., BUSLAEV G., KUNSHIN A., SIDOROV D., KRASLAWSKI A., BUDOVSKAYA M. 2021a. New concepts of hydrogen production and storage in Arctic region. Resources. Vol. 10(1) p. 1–18. DOI 10.3390/resources10010003.
  • DVOINIKOV M.V., KUCHIN V.N., MINTSAEV M.SH. 2021b. Development of viscoelastic systems and technologies for isolating water-bearing horizons with abnormal formation pressures during oil and gas wells drilling. Journal of Mining Institute. Vol. 247(1) p. 57–65. DOI 10.31897/PMI.2021.1.7.
  • FERNANDEZ M.P., IKONOMOU M.G., BUCHANAN I. 2007. An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of the Total Environment. Vol. 373(1) p. 250–269. DOI 10.1016/j.scitotenv.2006.11.018.
  • FILATOVA I., NIKOLAICHUK L., ZAKAEV D., ILIN I. 2021. Public-private partnership as a tool of sustainable development in the oil-refining sector: Russian case. Sustainability (Switzerland). Vol. 13(9), 5153. DOI 10.3390/su13095153.
  • GAI C., LIU Z. 2017. Gasification of sewage sludge for biofuel production: The effect of thermochemical pre-processing. Sewage Sludge: Assessment, Treatment and Environmental Impact. Beijing, China. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences p. 247–265.
  • GRAAF G.H., BEENACKERS A.A.C.M. 1996. Comparison of two-phase and three-phase methanol synthesis processes. Chemical Engineering and Processing: Process Intensification. Vol. 35(6) p. 413–427. DOI 10.1016/S0255-2701(96)04147-5.
  • GHOSH S., UDAY V., GIRI A., SRINIVAS S. 2019. Biogas to methanol: A comparison of conversion processes involving direct carbon dioxide hydrogenation and via reverse water gas shift reaction. Journal of Cleaner Production. Vol. 217 p. 615–626. DOI 10.1016/j.jclepro.2019.01.171.
  • GUPTA V., GOEL R. 2019. Managing dissolved methane gas in anaerobic effluents using microbial resource management-based strategies. Bioresource Technology. Vol. 289, 121601. DOI 10.1016/j.biortech.2019.121601.
  • GVOZDYAK P.I., DENIS A.D., MOGILEVICH N.F., ISINBERG M.B., GRISHCHENKO N.I., ERZIKOVA O.N. 1986. Bakterial’noye udaleniye metanola iz stochnykh vod [Bacterial removal of methanol from waste waters]. Sovetskiy zhurnal khimii i tekhnologii vody. Vol. 8(5) p. 135–137.
  • KALYUZHNAYA M.G., PURI A.W., LIDSTROM M.E. 2015. Metabolic engineering in methanotrophic bacteria. Metabolic Engineering. Vol. 29 p. 142–152. DOI 10.1016/j.ymben.2015.03.010.
  • KITAEV S.V., KOLOTILOV Y.V., PLOTNIKOV A.Y U ., KOVALEV A.A., SHEIKHGASANOV S.K. 2021. Study of efficiency of hydrate formation inhibitors in the process of production and transport of hydrocarbons in marine conditions. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. Vol. 332(2) p. 190–199. DOI 10.18799/24131830/2021/2/3055.
  • KUZHAEVA A., DZHEVAGA N., BERLINSKII I. 2019a. Modernization of catalyst systems for the processes of hydrocarbon conversion to synthesis gas. ARPN Journal of Engineering and Applied Sciences. Vol. 14(20) p. 3535–3543.
  • KUZHAEVA A.A., DZHEVAGA N.V., BERLINSKII I.V. 2019b. The processes of hydrocarbon conversion using catalytic systems. Journal of Physics: Conference Series. Vol. 1399(2), 022057. DOI 10.1088/1742-6596/1399/2/022057.
  • LI Y. 2003. Processing techniques of waste water with methyl alcohol in changing gas field. Tianranqi Gongye / Natural Gas Industry. Vol. 23(4) p. 112–115.
  • LITVINENKO V. 2020. The role of hydrocarbons in the global energy agenda: The focus on liquefied natural gas. Resources. Vol. 9(5), 264. DOI 10.3390/RESOURCES9050059.
  • LITVINENKO V., MEYER B. 2017. Syngas production: Status and potential for implementation in Russian industry. Cham. Springer. ISBN 3319890220 pp. 161. DOI 10.1007/978-3-319-70963-5.
  • LIU T., JIANG G., ZHANG P., SUN J., SUN H., WANG R., ZHENG M. 2016. A new low-cost drilling fluid for drilling in natural gas hydrate-bearing sediments. Journal of Natural Gas Science and Engineering. Vol. 33 p. 934–941. DOI 10.1016/j.jngse.2016.06.017.
  • MA Y., LI Y., GAO L., XIE J. 2020. Adsorption and degradation behavior of methanol in produced water in the soils of northern Shaanxi gas field, China. Applied Ecology and Environmental Research. Vol. 18(1) p. 929–942. DOI 10.15666/aeer/1801_929942.
  • MATANI A.G., MALI A. 2019. Blending methanol as a renewable fuel in automotive industries towards minimizing vehicular air pollution. International Journal of Recent Technology and Engineering. Vol. 8(3) p. 5496–5498. DOI 10.35940/ijrte.C5198.098319.
  • MATVEEVA T.V., SEMENOVA A.A., SHCHUR N.A., LOGVINA E.A., NAZAROVA O.V. 2017. Prospects of gas hydrate presence in the Chukchi Sea. Journal of Mining Institute. Vol. 226 p. 387–396. DOI 10.25515/pmi.2017.4.387.
  • MEDVEDEV Y U .V., POLYGALOV Y U .I., EROFEEV V.I., EROFEEV M.V., SOSNIN E.A., TARASENKO V.F., ISTOMIN V.A. 2005. Irradiation of methanol solutions with Xe2 and KrCl excilamps barrier discharge. Gas Industry. Vol. 2 p. 63–65.
  • MONDAL K., SASMAL S., BADGANDI S., CHOWDHURY D.R., NAIR V. 2016. Dry reforming of methane to syngas: a potential alternative process for value added chemicals – A techno-economic perspective. Environmental Science and Pollution Research. Vol. 23(22) p. 22267–22273. DOI 10.1007/s11356-016-6310-4.
  • MURZAKOV B.G., AKOPOVA G.S., MARKINA P.A. 2005. Ochistka metanolsoderzhashchikh vod s pomoshch’yu biologicheskikh preparatov [Purification of methanol-containing waters Rusing biological preparations]. Gazovaya promyshlennost’. Vol. 12 p. 58–60.
  • MURZAKOV B.G., AKOPOVA G.S., MARKINA P.A. 2006. Vydeleniye metilotrofnykh bakteriy iz mikrobiotsenoza metanolsoderzhashchikh vod [Isolation of methylotrophic bacteria from the microbiocenosis of methanol-containing waters]. Gazovaya promyshlennost’. Vol. 3 p. 83–85.
  • NIASAR H.S., DAS S., XU C.C., RAY M.B. 2019. Continuous column adsorption of naphthenic acids from synthetic and real oil sands process-affected water (OSPW) using carbon-based adsorbents. Chemosphere. Vol. 214 p. 511–518. DOI 10.1016/j.chemosphere.2018.09.078.
  • OHLSTRÖM M., MÄKINEN T., LAURIKKO J., PIPATTI R. 2001. New concepts for biofuels in transportation: Biomass-based methanol production and reduced emissions in advanced vehicles. Ser. VTT Tiedotteita – Valtion Teknillinen Tutkimuskeskus. No. 2074. ISBN 951-38-5781-6 pp. 97.
  • Prikaz No 59-np ot 21 dekabrya 2018 g. «Ob utverzhdenii lesokhozyaystvennogo reglamenta Surgutskogo lesnichestva i priznanii utrativshimi silu nekotorykh prikazov Departamenta prirodnykh resursov i nesyr’yevogo sektora ekonomiki Khanty-Mansiyskogo avtonomnogo okruga» — Yugra [Order #59-np December 21, 2018. On the approval of the forestry regulations of the Surgut forestry and the invalidation of some orders of the Department of Natural Resources and the Non-Resource Sector of the Economy of the Khanty-Mansi Autonomous Okrug – Yugra (as amended on October 29, 2021)] [online]. Khanty-Mansiysk. Departament nedropol’zovaniya i prirodnykh resursov Khanskogo i Mansiyskogo avtonomnogo okruga [Access 10.06.2021]. Available at: http://publication.pravo.gov.ru/Document/View/8601201908220002
  • QUIROZ CABASCANGO V.E., BAZHIN V.Y. 2020. Influence of the natural gas composition and flue gas recirculation in a reverberatory furnace for nickel alloys. IOP Conference Series: Materials Science and Engineering. Vol. 919(3), 032027. DOI 10.1088/1757-899X/919/3/032027.
  • QURESHI M.F., KHRAISHEH M., AL MOMANI F. 2020. Experimentally measured methane hydrate phase equilibria and ionic liquids inhibition performance in Qatar’s seawater. Scientific Reports. Vol. 10(1), 19463. DOI 10.1038/s41598-020-76443-1.
  • SALIKHOV R.M., CHERTOVSKIH E.О., GILMUTDINOV B.R., LEBEDEVA I.P., SHABANOV A.S., ISTOMIN V.A., KVON V.G., KRAPIVIN V.B., SERGEEVA D.V. 2020. Improving the efficiency of measures to prevent hydrate formation at the Yaraktinskoye oil-gas-condensate field. Neftyanoe Khozyaystvo – Oil Industry. Vol. 2020. Iss. 9 p. 50–54. DOI 10.24887/0028-2448-2020-9-50-54.
  • SCHABER V.M., IVANOVA I.V. 2017. Prospects for development of fuel cells. Journal of Mining Institute. Vol. 227 p. 540–546. DOI 10.25515/PMI.2017.5.540.
  • SEMENOV A.P., MENDGAZIEV R.I., STOPOREV A.S., ISTOMIN V.A., SERGEEVA , D.V., OGIENKO A.G., VINOKUROV V.A. 2021. The pursuit of a more powerful thermodynamic hydrate inhibitor than methanol. Dimethyl sulfoxide as a case study. Chemical Engineering Journal. Vol. 423, 130227. DOI 10.1016/j.cej.2021.130227.
  • SP 32.13330.2018. Svod pravil. Kanalizatsiya. Naruzhnyye seti i sooruzheniya [Rule book. Sewerage. Pipelines and wastewater treatment plants.] [online]. [Access 10.06.2021]. Available at: https://docs.cntd.ru/document/554820821
  • SHARIKOV Y.V., SNEGIREV N.V., TKACHEV I.V. 2020. Development of a control system based on predictive mathematical model of the C5-C6 isomerization process. Journal of Chemical Technology and Metallurgy. Vol. 55(2) p. 335–344.
  • STARIKOV V.P. 2012. Ekologiya zhivotnykh Khanty-Mansiyskogo avtonomnogo okruga [Animal ecology of the Khanty-Mansi Autonomous Okrug]. Tomsk. LLC RASKO pp. 94.
  • TEIXEIRA A.M., ARINELLI L.D.O., DE MEDEIROS J.L., ARAUJO O.D.Q.F. 2018. Recovery of thermodynamic hydrate inhibitors methanol, ethanol and MEG with supersonic separators in offshore natural gas processing. Journal of Natural Gas Science and Engineering. Vol. 52 p. 166–186 DOI 10.1016/j.jngse.2018.01.038.
  • TEIXEIRA A.M., ARINELLI L.D.O., DE MEDEIROS J.L., ARAUJO O.D.Q.F. 2019. Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO 2 drying. Journal of Environmental Management. Vol. 236 p. 534–550. DOI 10.1016/j.jenvman.2019.02.008.
  • TIMOSHENKO M.N., SHPAK A.V. 1989. Udaleniye metanola iz stochnykh vod gazovykh mestorozhdeniy [Removal of methanol from gas field waste water]. Sovetskiy zhurnal khimii i tekhnologii vody. Vol. 11(2) p. 118–120.
  • TRICKEY K., HADJIMICHAEL N., SANGHAVI P. 2020. Public reporting of hydraulic fracturing chemicals in the USA, 2011–18: A before and after comparison of reporting formats. The Lancet Planetary Health. Vol. 4(5) p. e178-e185. DOI 10.1016/S2542-5196(20)30076-0.
  • WANG R., L IU T., NING F., OU W., ZHANG L., WANG Z. ..., JIANG G. 2019. Effect of hydrophilic silica nanoparticles on hydrate formation: Insight from the experimental study. Journal of Energy Chemistry. Vol. 30 p. 90–100. DOI 10.1016/j.jechem.2018.02.021.
  • YANG L., HUANG J., MA R., YOU R., ZENG H., RUI Z. 2019. Metal-organic framework-derived IrO 2 /CuO catalyst for selective oxidation of methane to methanol. ACS Energy Letters. Vol. 4(12) p. 2945–2951. DOI 10.1021/acsenergylett.9b01992.
  • ZAGASHVILI Y.V., KUZMIN A.M. 2020. Influence of hydrogen-containing gas composition on methanol yield. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. Vol. 331(10) p. 187–195. DOI 10.18799/24131830/2020/10/2871.
  • ZAPOROZHETS E.P., SHOSTAK N.A. 2019. Efficiency estimation of the single- and multi component anti-hydrate reagents. Journal of Mining Institute. Vol. 238 p. 423–429. DOI 10.31897/PMI.2019.4.423.
  • ZHANG L., XU C., CHAMPAGNE P. 2010. Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management. Vol. 51(5) p. 969–982. DOI 10.1016/j.enconman.2009.11.038.
  • ZHOU J., BAI J., HUYAN N., XU W. 2014. Simplification and optimization of methanol injection in deoiling and dehydration devices in natural gas processing plants: A case history from the Yulin Gas Field operated by the PetroChina Changqing Oilfield Company. Natural Gas Industry. Vol. 34(2) p. 111–116. DOI 10.3787/j.issn.1000-0976.2014.02.018.
  • ZOU X., HUANG F., ZHANG L., GELE T. 2021. Discussion on water dew point and hydrocarbon dew point of natural gas. IOP Conference Series: Earth and Environmental Science. Vol. 651(3), 032090. DOI 10.1088/1755-1315/651/3/032090.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34f52bab-877f-4c6a-b0f4-50e2bfc31653
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.