PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A theoretical derivation of the dilatancy equation for brittle rocks based on Maxwell model

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the micro-cracks in the brittle rocks are assumed to be penny shaped and evenly distributed; the damage and dilatancy of the brittle rocks is attributed to the growth and expansion of numerous micro-cracks under the local tensile stress. A single crack’s behaviour under the local tensile stress is generalized to all cracks based on the distributed damage mechanics. The relationship between the local tensile stress and the external loading is derived based on the Maxwell model. The damage factor corresponding to the external loading is represented using thep–alpha (p–α) model. A dilatancy equation that can build up a link between the external loading and the rock dilatancy is established. A test of dilatancy of a brittle rock under triaxial compression is conducted; the comparison between experimental results and our theoretical results shows good consistency.
Czasopismo
Rocznik
Strony
55--64
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, China
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, China
autor
  • State Key Laboratory of Disaster Prevention and Mitigation of Explosion and Impact, PLA University of Science and Technology, Nanjing, China
Bibliografia
  • 1. Ashby MF, Sammis CG (1990) The damage mechanics of brittle solids in compression. Pure appl Geophys 133(3):489–521. doi:10.1007/BF00878002
  • 2. Atkinson BK (1987) Fracture mechanics of rock. Academic Press, London
  • 3. Bhatt JJ, Carroll MM, Schatz JF (1975) A spherical model calculation for volumetric response of porous rocks. J Appl Mech 42(2):363–368. doi:10.1115/1.3423582
  • 4. Bosman JD, Malan DF, Drescher K (2000) Time-dependent tunnel deformation at Hartebeestfontein Mine. J S Afr Inst Min Metall 100(6):333–340
  • 5. Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953. doi:10.1029/JZ071i016p03939
  • 6. Bridgman PW (1949) Volume changes in the plastic stages of simple compression. J Appl Phys 20:1241–1251. doi:10.1063/1.1698316
  • 7. Carroll MM, Holt AC (1972) Static and dynamic pore collapse relations for ductile porous materials. J Appl Phys 43(4):1626–1635. doi:10.1063/1.1661372
  • 8. Cogan J (1976) Triaxial creep tests of Opohonga limestone and Ophir shale. Int J Rock Mech Min Sci Geomech Abstr 13(1):1–10. doi:10.1016/0148-9062(76)90221-7
  • 9. Cook NGW (1970) An experiment proving that dilatancy is a pervasive volumetric property of brittle rock loaded to failure. Rock Mech 2(4):181–188. doi:10.1007/BF01245573
  • 10. Costin LS (1983) A microcrack model for the deformation and failure of brittle rock. J Geophys Res 88(B11):9485–9492. doi:10.1029/JB088iB11p09485
  • 11. Cristescu ND (2002) New trends in rock mechanics. Int Appl Mech 38(1):1–22. doi:10.1023/A:1015364607665
  • 12. Das S, Scholz CH (1981) Theory of time-dependent rupture in the Earth. J Geophys Res 86(B7):6039–6051. doi:10.1029/JB086iB07p06039
  • 13. Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812. doi:10.1016/j.ijrmms.2004.02.003
  • 14. Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of westerly granite. Int J Rock Mech Min Sci 37(99):285–296. doi:10.1016/S1365-1609(99)00106-9
  • 15. Han LJ, He YN, Zhang HQ (2016) Study of rock splitting failure based on Griffith strength theory. Int J Rock Mech Min Sci 83:116–121. doi:10.1016/j.ijrmms.2015.12.011r
  • 16. Hertel ES, Kerley GI (1998) CTH reference manual: The equation of state package, Sandia National Laboratories, SAND98-0947
  • 17. Huang H-X, Fan P-X, Li J, Wang M-Y, Rong X-L (2016) A theoretical explanation for rock core disking in triaxial unloading test by considering local tensile stress. Acta Geophys 64(5):1430–1445. doi:10.1515/acgeo-2016-0068
  • 18. Kachanov LM (1986) Introduction to the continuum damage mechanics. Springer-Science+Business Media, Dordrecht
  • 19. Klein E, Reuschle T (2003) A model for the mechanical behaviour of Bent-heim sandstone in the brittle regime. Pure Appl Geophys 160:833–849. doi:10.1007/978-3-0348-8083-1_3
  • 20. Klein E, Reuschle T (2004) A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. Int J Rock Mech Min Sci 41(6):975–986. doi:10.1016/j.ijrmms.2004.03.003
  • 21. Martin CD, Read RS (1992) Strength of massive granite around underground excavation. In: Proc. 16th Canadian Rock Mechanics Symposium, Sudbury, pp 1–11
  • 22. Paterson MS, Wong TF (2005) Experimental rock deformation–the brittle field. Springer, Berlin
  • 23. Qi C-Z, Wang M-Y, Bai J-P, Li K-R (2014) Mechanism underlying dynamic size effect on rock mass strength. Int J Impact Eng 68:1–7. doi:10.1016/j.ijimpeng.2014.01.005
  • 24. Qi C-Z, Wang M-Y, Bai J-P, Wei X-K, Wang H-S (2016) Investigation into size and strain rate effects on the strength of rock-like materials. Int J Rock Mech Min Sci 86:132–140. doi:10.1016/j.ijrmms.2016.04.008
  • 25. Qian Q-H, Zhou X-P (2011) Non-euclidean continuum model of the zonal disintegration of surrounding rocks around a deep circular tunnel in a non-hydrostatic pressure state. J Min Sci 47(1):37–46. doi:10.1134/S1062739147010059
  • 26. Read RS (2004) 20 years of excavation response studies at AECL’s underground research laboratory. Int J Rock Mech Min Sci 41(8):1251–1275. doi:10.1016/j.ijrmms.2004.09.012
  • 27. Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophys Res 73(4):1417–1432. doi:10.1029/JB073i004p01417
  • 28. Scholz CH, Sykes LR, Aggarwal YP (1973) Earthquake prediction: a physical basis. Science 181(4102):803–810. doi:10.1126/science.181.4102.803
  • 29. Seaman L, Curran DR, Shockey DA (1976) Computational models for ductile and brittle fracture. J Appl Phys 47(11):4814–4826. doi:10.1063/1.322523
  • 30. Szczepanik Z, Milne D, Kostakis K, Eberhardt E (2003) Long term laboratory strength tests in hard rock. 10th ISRM Congress “Technology Roadmap for Rock Mechanics”. Sandton, South Africa, pp 1179–1184
  • 31. Tan TK (1982) The mechanical problems for the long-term stability of underground galleries. Chin J Rock Mech Eng 1(1):1–20
  • 32. Tan TK, Kang WF (1983) Time dependent dilatancy prior to rock failure and earthquakes. In: Proc. 5th ISRM Congress, Melbourne
  • 33. Tan T-K, Shi Z-Q, Yu Z-H, Wu X-Y (1989) Dilatancy, creep and relaxation of brittle rocks measured with the 8000 kN multipurpose triaxial apparatus. Phys Earth Planet Inter 55(3–4):335–352. doi:10.1016/0031-9201(89)90081-2
  • 34. Tapponnier P, Brace WF, Tapponnier P, Brace WF (1976) Development of stress-induced microcracks in westerly granite. Int J Rock Mech Min Sci Geomech Abstr 13:103–112. doi:10.1016/0148-9062(76)91937-9
  • 35. Vásárhelyi B, Bobet A (2000) Modeling of crack initiation, propagation and coalescence in uniaxial compression. Rock Mech Rock Eng 33(2):119–139. doi:10.1007/s006030050038
  • 36. Wiederhorn SM, Freiman SW, Fuller Jr ER, Simmons CJ (1982) Effects of water and other dielectrics on crack growth. J Mater Sci 17:3460–3478. doi:10.1007/BF00752191
  • 37. Yang S-Q, Jing H-W, Wang S-Y (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45:583–606. doi:10.1007/s00603-011-0208-8
  • 38. Zhang Y, Shao J-F, Xu W-Y, Zhao H-B, Wang W (2015) Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone. Rock Mech Rock Eng 48(3):1083–1096. doi:10.1007/s00603-014-0623-8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-33e0f851-57c0-47d6-b6c6-73f33cbcd3d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.