Tytuł artykułu
Identyfikatory
Warianty tytułu
Ocena przydatności do spożycia wody ze źródła w Leśniowie (Polska południowa)
Języki publikacji
Abstrakty
Natural springs are one of the potential sources of water supply. Increasing anthropogenic activity, inadequate sanitary conditions and intense rainfall are important factors that threaten the maintenance of adequate water quality in springs. Physicochemical and microbiological tests were performed in two measurement series for water from the spring in Leśniów (southern Poland). The test results were compared with the permissible limits for drinking water and the Nemerow Pollution Index (NPI) value was calculated for these parameters. The average conductivity of water in this spring is approximately 390 μS/cm, pH is about 7 and due to its alkalinity, water can be classified as hard. The NPI values varied, i.e. from about 33 to about 3, which was due to the high mercury content measured in the first sample. Additionally, the number of coliform bacteria reached 35 cfu/100 ml, and the total number of microorganisms at 22±2°C reached 27 cfu/ml in the first measurement series. Such values indicate water contamination, which may pose a significant threat to human health when consuming such water. The second series of measurements showed lower pollution values, but the previously obtained results suggest that it is necessary to control the water quality in the springs and control nearby pollutant emitters.
Naturalne źródła są jednym z potencjalnych źródeł zaopatrzenia w wodę. Rosnąca działalność antropogeniczna, nieodpowiednie warunki sanitarne oraz intensywne opady deszczu to istotne czynniki zagrażające utrzymaniu odpowiedniej jakości wody w źródłach. Badania fizykochemiczne i mikrobiologiczne przeprowadzono w dwóch seriach pomiarowych wody ze źródła w Leśniowie (Polska południowa). Wyniki badań porównano z dopuszczalnymi wartościami dla wody pitnej i dla tych parametrów obliczono wartość wskaźnika zanieczyszczenia Nemerowa (NPI). Średnia przewodność wody w tym źródle wynosi ok. 390 μS/cm, pH ok. 7, a ze względu na zasadowość wodę można zaklasyfikować jako twardą. Wartości NPI wahały się od około 33 do około 3, co wynikało z dużej zawartości rtęci zmierzonej w pierwszej próbce. Dodatkowo w pierwszej serii pomiarowej liczba bakterii z grupy coli osiągnęła 35 jtk/100 ml, a całkowita liczba drobnoustrojów w temperaturze 22±2°C osiągnęła 27 jtk/ml. Wartości te wskazują na zanieczyszczenie wody, które w przypadku spożycia może stanowić istotne zagrożenie dla zdrowia ludzi. Druga seria pomiarów wykazała mniejsze wartości zanieczyszczeń, jednak uzyskane wcześniej wyniki sugerują, że konieczna jest kontrola jakości wody w źródłach oraz kontrola pobliskich źródeł zanieczyszczeń.
Czasopismo
Rocznik
Tom
Strony
83--96
Opis fizyczny
Bibliogr. 51 poz., mapy, tab., wykr.
Twórcy
autor
- University of Silesia, Faculty of Natural Sciences, Sosnowiec, Poland
autor
- University of Silesia, Faculty of Natural Sciences, Sosnowiec, Poland
autor
- University of Silesia, Faculty of Natural Sciences, Sosnowiec, Poland
Bibliografia
- 1) Ansari MA, Deodhar A, Kumar US, Khatti VS. Water quality of few springs in outer Himalayas – A study on the groundwater–bedrock interactions and hydrochemical evolution. Groundwater for Sustainable Development 2015; 1(1–2):59–67, DOI 10.1016/j.gsd.2016.01.002;
- 2) Kayastha SP. Geochemical parameters of water quality of Karra river, Hetauda industrial area, central Nepal. Journal of Institute of Science and Technology 2015; 20(2):31–6, DOI 10.3126/jist.v20i2.13945;
- 3) Von Fumetti S, Bieri-Wigger F, Nagel P. Temperature variability and its influence on macroinvertebrate assemblages of alpine springs. Ecohydrology 2017; 10(7):e1878, DOI 10.1002/eco.1878;
- 4) Jokiel P. Springs, their role in the environment and importance in water management. Folia Geographica 1997; 2: 5–7;
- 5) Sari MM, Andarani P, Notodarmojo S, Harryes RK, Nguyen MN, Yokota K, et al. Plastic pollution in the surface water in Jakarta, Indonesia. Marine Pollution Bulletin 2022; 182(114023):114023, DOI 10.1016/j.marpolbul.2022.114023;
- 6) Todd DK, Mays LW. Groundwater Hydrology. 3rd ed. Nashville, TN: John Wiley & Sons; 2004;
- 7) Pokładek R, Kowalczyk T. Na, K, Ca, Mg concentrations in effluent water drained from agricultural catchment basins in Lower Silesia. Journal of Elementology 2012; 16:467–79, DOI 10.5601/jelem.2011.16.3.11;
- 8) Keeler BL, Polasky S, Brauman KA, Johnson KA, Finlay JC, O’Neill A, et al. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proceedings of the National Academy of Sciences 2012; 109(45):18619–24, DOI 10.1073/pnas.1215991109;
- 9) Gothwal R, Shashidhar T. Antibiotic pollution in the environment: A review: Antibiotic pollution in the environment. Clean (Weinh) 2015; 43(4):479–89, DOI 10.1002/clen.201300989;
- 10) Maksymiuk Z, Moniewski P. Hydrological and landscape role of springs in a small catchment in the western part of the Wzniesienie Łódzkie edge zone. folia ge. 2000;5:67–87;
- 11) Grimalt JO, Fernandez P, Berdie L, Vilanova RM, Catalan J, Psenner R, et al. Selective trapping of organochlorine compounds in mountains lakes of temperate areas. Environmental Science & Technology 2001; 35(13):2690–7, DOI 10.1021/es000278r;
- 12) Kumar R, Sharma P, Manna C, Jain M. Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. The Science of The Total Environment 2021; 782(146695):146695, DOI 10.1016/j.scitotenv.2021.146695;
- 13) Khatri N, Tyagi S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science 2015; 8(1):23–39, DOI 10.1080/21553769.2014.933716;
- 14) Twinomucunguzi FRB, Nyenje PM, Kulabako RN, Semiyaga S, Foppen JW, Kansiime F. Emerging organic contaminants in shallow groundwater underlying two contrasting peri-urban areas in Uganda. Environmental Monitoring and Assessment 2021; 193(4):228, DOI 10.1007/s10661-021-08975-6;
- 15) Chelmicki W, Jokiel P, Michalczyk Z, Moniewski P. Distribution, discharge and regional characteristics of springs in Poland. Episodes 2011; 34(4):244–56, DOI 10.18814/epiiugs/2011/v34i4/003;
- 16) Nguyet VTM, Goldscheider N. Tracer tests, hydrochemical and microbiological investigations as a basis for groundwater protection in a remote tropical mountainous karst area, Vietnam. Hydrogeological Journal 2006; 14(7):1147–59, DOI 10.1007/s10040-006-0038-z;
- 17) Różkowski J. Groundwaters of carbonate formations in the southern part of Jura Krakowsko-Częstochowska and problems with their protection. Katowice: Uniwersytet Śląski; 2006;
- 18) Muter O, Bartkevics V. Advanced analytical techniques based on high-resolution mass spectrometry for the detection of micropollutants and their toxicity in aquatic environments. Current Opinion in Environmental Science & Health 2020; 18:1–6, DOI 10.1016/j.coesh.2020.05.002;
- 19) Dumnicka E, Galas J, Koperski P. Benthic invertebrates in Karst springs: Does substratum or location define communities? Internationale Revue der gesamten Hydrobiologie und Hydrographie 2007; 92(4–5):452–64, DOI 10.1002/iroh.200610991;
- 20) Pant RR, Zhang F, Rehman FU, Wang G, Ye M, Zeng C, et al. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. The Science of The Total Environment 2018; 622–623:770–82, DOI 10.1016/j.scitotenv.2017.12.063;
- 21) Dumaru B, Kayastha SP, Pandey VP. Spring water assessment for quality and suitability for various uses: the case of Thuligaad watershed, western Nepal. Environmental Earth Sciences 2021; 80(17), DOI 10.1007/s12665-021-09826-w;
- 22) Masoner JR, Kolpin DW, Cozzarelli IM, Barber LB, Burden DS, Foreman WT, et al. Urban stormwater: An overlooked pathway of extensive mixed contaminants to surface and groundwaters in the United States. Environmental Science & Technology 2019; 53(17):10070–81, DOI 10.1021/acs.est.9b02867;
- 23) Bradley PM, LeBlanc DR, Romanok KM, Smalling KL, Focazio MJ, Cardon MC, et al. Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. Environment International 2021; 152(106487):106487, DOI 10.1016/j.envint.2021.106487;
- 24) Schwitzguébel J-P, Aubert S, Grosse W, Laturnus F. Sulphonated aromatic pollutants. Limits of microbial degradability and potential of phytoremediation. Environmental Science and Pollution Research 2002; 9(1):62–72, DOI 10.1007/BF02987317;
- 25) Heliasz Z, Lewandowski J, Liszkowski J. Detailed Geological Map of Poland. Arkusz Żarki, Polish Geological Institute, Sosnowiec, 1992;
- 26) Heliasz Z, Lewandowski J, Liszkowski J. Explanations to the Detailed Geological Map of Poland. Żarki sheet. Polish Geological Institute, Warsaw, 1994;
- 27) Matyszkiewicz J, Krajewski M, Żaba J. Structural control on the distribution of Upper Jurassic carbonate buildups in the Kraków-Wieluń. Neues Jahrbuch für Geologie und Paläontologie. 2006;3, DOI 10.1127/njgpm/2006/2006/182;
- 28) Lewandowski J. The extent of the ice sheet of the Central Polish Glaciation in the Silesian Upland. Bulletin of the Geological Institute. 1982; 337(26):115–36;
- 29) Różkowski A, Siemiński A, Pacholewski A, Zembal M. Explanations for the hydrogeological map of Poland on a scale of 1:50,000. Żarki sheet. Warsaw: Polish Geological Institute; 1997;
- 30) Hermanowski P, Ignaszak T. Ground water vulnerability based on four different assessment methods and their quantitative comparison in a typical North European Lowland river catchment (the Pliszka River catchment). 2017;
- 31) Kabbour BB, Zouhri L, Mania J, Colbeaux J-P. Assessing groundwater contamination risk using the DASTI/IDRISI GIS method: coastal system of western Mamora, Morocco. Bulletin of Engineering Geology and the Environment 2007; 66(4):507–507, DOI 10.1007/s10064-007-0104-3;
- 32) Oke SA, Vermeulen D, Gomo M. Aquifer vulnerability assessment of the Dahomey Basin using the RTt method. Environmental Earth Sciences 2016; 75(11), DOI 10.1007/s12665-016-5792-1;
- 33) Krawczyk J, Turek J. GIS database of the hydrogeological map of Poland 1:50,000. The first aquifer is sensitive to pollution. Warsaw: Polish Geological Institute; 2013;
- 34) Yáñez MA, Valor C, Catalán V. A simple and cost-effective method for the quantification of total coliforms and Escherichia coli in potable water. Journal of Microbiological Methods 2006; 65(3):608–11, DOI 10.1016/j.mimet.2005.09.005;
- 35) Parajuli K, Joshi J, Gautam J. Major springs and their status in mid-hills of nepal: a case study of samdi micro-watershed of Dhandkhola watershed. Clean Energy Nepal. 2019; 10–5;
- 36) Siwek J, Baścik M. The natural and anthropogenic changes of springs in the Krakowsko-Wielunska and Miechowska Uplands (Southern Poland) and the role of springs in. Cracow: Institute of Geography and Spatial Management; 2013;
- 37) Eckhardt DAV, Sloto RA, United U S Department of the Interior. Baseline groundwater quality in National Park units within the Marcellus and Utica shale gas plays, New York, Pennsylvania, and West Virginia, 2011: Open-file report 2012-1150. Bibliogov; 2013;
- 38) Łukasik M, Dąbrowska D. Groundwater quality testing in the area of municipal waste landfill sites in Dąbrowa Górnicza (southern Poland). Environmental & Socio-economic Studies 2022; 10(1):13–21, DOI 10.2478/environ-2022-0002;
- 39) Dąbrowska D, Witkowski AJ. Groundwater and human Health Risk Assessment in the vicinity of a municipal waste landfill in Tychy, Poland. Applied Sciences (Basel) 2022; 12(24):12898, DOI 10.3390/app122412898;
- 40) https://dziennikchód.pl/woda-ze-zrodelka-znow-nadaj-sie-do-picia/ar/41953);
- 41) Kumar M, Singh S, Dwivedi S, Trivedi A, Dubey I, Trivedi SP. Copper-induced genotoxicity, oxidative stress, and alteration in transcriptional level of autophagy-associated genes in Snakehead fish Channa punctatus. Biological Trace Element Research 2023; 201(4):2022–35, DOI 10.1007/s12011-022-03301-8;
- 42) Fashola M, Ngole-Jeme V, Babalola O. Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health 2016; 13(11):1047, DOI 10.3390/ijerph1311104;
- 43) Nawała J, Czupryński K, Popiel S, Dziedzic D, Bełdowski J. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples. Analytica Chimica Acta 2016; 933:103–16, DOI 10.1016/j.aca.2016.05.033;
- 44) Gworek B, Dmuchowski W, Baczewska AH, Brągoszewska P, Bemowska-Kałabun O, Wrzosek-Jakubowska J. Air contamination by mercury, emissions and transformations-a Review. Water Air & Soil Pollution 2017; 228(4):123, DOI 10.1007/s11270-017-3311-y;
- 45) Siudek P, Frankowski M, Siepak J. Atmospheric particulate mercury at the urban and forest sites in central Poland. Environmental Science and Pollution Research 2016; 23(3):2341–52, DOI 10.1007/s11356-015-5476-5;
- 46) Clarkson TW. Mercury: major issues in environmental health. Environmental Health Perspectives 1993; 100:31–8, DOI 10.1289/ehp.9310031
- 47) Ask K, Akesson A, Berglund M, Vahter M. Inorganic mercury and methylmercury in placentas of Swedish women. Environmental Health Perspectives 2002; 110(5):523–6, DOI 10.1289/ehp.02110523;
- 48) Budtz-Jørgensen E, Grandjean P, Jørgensen PJ, Weihe P, Keiding N. Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages. Environmental Research 2004; 95(3):385–93, DOI 10.1016/j.envres.2003.11.001;
- 49) Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Guzmán Bernardo FJ, Jiménez Moreno M, Herculano AM, do Nascimento JLM, et al. Mercury in the Tapajós River basin, Brazilian Amazon: A review. Environment International 2010; 36(6):593–608, DOI 10.1016/j.envint.2010.03.011;
- 50) Fernandes Azevedo B, Barros Furieri L, Peçanha FM, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Biomedicine and Biotechnology 2012; 2012:949048, DOI 10.1155/2012/949048;
- 51) Weststrate J, Dijkstra G, Eshuis J, Gianoli A, Rusca M. The sustainable development goal on water and sanitation: Learning from the millennium development goals. Social Indicators Research 2019; 143(2):795–810, DOI 10.1007/s11205-018-1965-5.
Uwagi
Błędny identyfikator DOI
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-331f08be-3c06-49d9-8091-e7eb1e39b08d