PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measuring the variability of the pedestrian crossing function in the socio-technical system of urban road transport

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In some areas of transportation systems, reduction of risk using typical safety engineering tools can be difficult due to the relatively small number of events that can be analysed to draw conclusions for the future. One way out of this situation is to analyse systems in their normal operation when no adverse event occurs. It can be done, inter alia, with the Functional Resonance Analysis Method. An important research problem in this context is how to describe the variability of system functions. In this article, we propose an original method, based on the number of hazard sources present in a given analysis domain and apply it to a real pedestrian crossing. The obtained results indicate that the quantitative coincidence measures proposed by us are a convenient way to capture ‘functional vibrations’ in real socio-technical systems. This allows the prediction of undesired states of such systems based on their normal operation.
Rocznik
Tom
Strony
57--68
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Poznan University of Technology, Pl. Skłodowskiej-Curie 5, 60-695 Poznań, Poland
  • Poznan University of Technology, Pl. Skłodowskiej-Curie 5, 60-695 Poznań, Poland
  • Poznan University of Technology, Pl. Skłodowskiej-Curie 5, 60-695 Poznań, Poland
Bibliografia
  • [1] Aven T. 2020. The Science of Risk Analysis: Foundation and Practice. ISBN: 978-0-367-13922-3.
  • [2] Elvik R., N.G. Voll. 2014. "Challenges of improving safety in very safe transport systems". Safety Science 63: 115-123. DOI: 10.1016/j.ssci.2013.10.024.
  • [3] Gill A., P. Smoczyński. 2018. "Layered model for convenient designing of safety system upgrades in railways". Safety Science 110B: 168-176. DOI: 10.1016/j.ssci.2017.11.024.
  • [4] Hollnagel E. 2018. Safety-II in Practice. Routledge.
  • [5] Hollnagel E. 2012. FRAM, the functional resonance analysis method: modelling complex socio-technical systems. Ashgate. ISBN: 9781409445517.
  • [6] Hollnagel E. 2014. Safety-I and safety-II : the past and future of safety management. CRC Press. ISBN: 9781472423085.
  • [7] Kadziński A. 2013. Studium wybranych aspektów niezawodności systemów oraz obiektów pojazdów szynowych. [In Polish: Study on selected dependability aspects of systems and rail vehicles objects]. Wydawnictwo Politechniki Poznańskiej, Poznań. ISBN: 9788377752890.
  • [8] Kim T., S. Nazir, K.I. Øvergård. 2016. "A STAMP-based causal analysis of the Korean Sewol ferry accident". Safety Science 83: 93-101. DOI: 10.1016/j.ssci.2015.11.014.
  • [9] Klockner K., Y. Toft. "Railway accidents and incidents: Complex socio-technical system accident modelling comes of age". Safety Science 110: 59-66, DOI: 10.1016/j.ssci.2017.11.022.
  • [10] Krukowicz T., K. Firląg, E. Sterniczuk. 2021. "Incorrect U-turning of vehicles at intersections with traffic lights". Archives of Transport 57(1): 131-145. DOI: 10.5604/01.3001.0014.8043.
  • [11] Larue G.S., A. Naweed, D. Rodwell. 2018. "The road user, the pedestrian, and me: Investigating the interactions, errors and escalating risks of users of fully protected level crossings". Safety Science 110: 80-88. DOI: 10.1016/j.ssci.2018.02.007.
  • [12] Leveson N.G. 2011. Engineering a Safer World. Systems Thinking Applied to Safety. The MIT Press. ISBN: 978-0-262-01662-9.
  • [13] Patriarca R., J. Bergström. 2017. Modelling complexity in everyday operations: functional resonance in maritime mooring at quay. Cognition, Technology & Work. DOI: 10.1007/s10111-017-0426-2.
  • [14] Restel F.J. 2021. "The railway operation process evaluation method in terms of resilience analysis". Archives of Transport 57(1): 73-89. DOI: 10.5604/01.3001.0014.7485.
  • [15] Salmon P.M., M.G. Lenne, G.H. Walker, N.A. Stanton, A. Filtness. 2014. "Using the Event Analysis of Systemic Teamwork (EAST) to explore conflicts between different road user groups when making right hand turns at urban intersections". Ergonomics 57(11): 1628-1642. DOI: 10.1080/00140139.2014.945491.
  • [16] Salmon P.M., G.J.M. Read, G.H. Walker, N. Goode, E. Granta, C. Dallata, T. Cardena, A. Naweedc, N.A. Stantonda. 2018. "STAMP goes EAST: Integrating systems ergonomics methods for the analysis of railway level crossing safety management". Safety Science 110: 31-46. DOI: 10.1016/j.ssci.2018.02.014.
  • [17] Smoczyński P., A. Kadziński, A. Gill, A. Kobaszyńska-Twardowska. 2018. "Applicability of the Functional Resonance Analysis Method in urban transport". MATEC Web of Conferences 231. P. 05006. DOI: 10.1051/matecconf/201823105006.
  • [18] Studic M., A. Majumdar, W. Schuster, W.Y. Ochieng. 2017. "A systemic modelling of ground handling services using the functional resonance analysis method". Transportation Research Part C: Emerging Technologies 74: 245-260. DOI: 10.1016/j.trc.2016.11.004.
  • [19] Thakur S., S. Biswas. 2019. "Assessment of pedestrian-vehicle interaction on urban roads: a critical review". Archives of Transport 51(3): 49-63. DOI: 10.5604/01.3001.0013.6162.
  • [20] Underwood P., P. Waterson, G. Braithwaite. 2016. " ‘Accident investigation in the wild’ – A small-scale, field-based evaluation of the STAMP method for accident analysis". Safety Science 82: 129-143. DOI: 10.1016/j.ssci.2015.08.014.
  • [21] Weinberg G.M., D. Weinberg. 1979. On the design of stable systems. Wiley, New York. ISBN: 0471047228.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31f6cbb1-9302-4e5d-98ea-03b15f703068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.