PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of solubilization dynamics of manure organic matter and phosphorus as a function of pH control and enzyme supplementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential use of commercial enzyme and pH control has been investigated for enhancing dairy manure fermentation and modeling dissolved organic matter and orthophosphate (PO4-P) dynamics of fermenters. Anaerobic lab-scale batch fermenters (initial total solids concentration (TSo) = 3.8 wt. %) were fed with separated dairy manure solids and operated under pH controls (5 and 9.5). The enzyme-supplemented alkaline fermenters clearly outperformed the acidic fermenters in terms of chemical oxygen demand (COD) solubilization: ca. 50% vs. 20%, respectively. Soluble PO4-P in the acidic fermenters was comparably higher but constituted less than 20% of total phosphorus. Better soluble COD (>80%) and soluble PO4-P (>70%) yields were noted for the dilute fermenters (TSo = 0.6–0.8 wt. %). An existing model was retrofitted, calibrated and validated for simulating dynamics of soluble COD, volatile fatty acids, and soluble orthophosphate under various pH and enzyme conditions.
Rocznik
Strony
155--170
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
  • Department of Environmental Engineering, Abant Izzet Baysal University, Bolu 14280, Turkey
  • Department of Biological Systems Engineering, 460 Henry Mall, University of Wisconsin–Madison, Madison, WI 53706, USA.
  • Department of Biological Systems Engineering, 460 Henry Mall, University of Wisconsin–Madison, Madison, WI 53706, USA
  • Department of Environmental Engineering, Abant Izzet Baysal University, Bolu 14280, Turkey
  • Department of Biological Systems Engineering, 460 Henry Mall, University of Wisconsin–Madison, Madison, WI 53706, USA.
Bibliografia
  • [1] USGAO, Concentrated animal feeding operations EPA needs more information and a clearly defined strategy to protect air and water quality from pollutants of concern, http://www.gao.gov/assets/290/280229.pdf. Accessed on Jan. 16, 2013, 2008.
  • [2] USDA, FY-2005. Annual report manure and byproduct utilization national program 206,
  • http://www.ars.usda.gov/SP2UserFiles/Program/206/NP206FY2005AnnualReport.pdf. Accessed on Jan. 16, 2013, 2005.
  • [3] CENTNER T.J., Governmental oversight of discharges from concentrated animal feeding operations, Environ. Manage., 2006, 37, 745.
  • [4] TOETZ D., Nitrate in ground and surface waters in the vicinity of a concentrated animal feeding operation, Arch. Hydrobiol., 2006, 166, 67.
  • [5] VANOTTI M.B., SZOGI A.A., HUNT P.G., MILLNER P.D., HUMENIK F.J. Development of environmentally superior treatment system to replace anaerobic swine lagoons in the USA, Bioresource Technol., 2007, 98, 3184.
  • [6] GUNGOR K., KARTHIKEYAN K.G., Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters, Bioresource Technol., 2008, 99, 425.
  • [7] WEN Z.Y., LIAO W., CHEN S.L., Hydrolysis of animal manure lignocellulosics for reducing sugar production, Bioresource Technol., 2004, 91, 31.
  • [8] MYINT M., NIRMALAKHANDAN N., Evaluation of first-order, second-order, and surface-limiting reactions in anaerobic hydrolysis of cattle manure, Environ. Eng. Sci., 2006, 23, 970.
  • [9] LIAO W., LIU Y., LIU C.B., CHEN S.L., Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material – dairy manure, Bioresource Technol., 2004, 94, 33.
  • [10] KENGE A.A., LIAO P.H., LO K.V., Treating solid dairy manure using microwave-enhanced advanced oxidation process, J. Environ. Sci. Health B, 2009, 44, 606.
  • [11] YUAN H., CHEN Y., ZHANG H., JIANG S., ZHOU Q., GU G., Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions, Environ. Sci. Technol., 2006, 40, 2025.
  • [12] SZOGI A.A., VANOTTI M.B., HUNT P.G., Phosphorus recovery from poultry litter, Trans. ASABE, 2008, 51, 1727.
  • [13] MYINT M., NIRMALAKHANDAN N., SPEECE R.E., Anaerobic fermentation of cattle manure: modeling of hydrolysis and acidogenesis, Water Res., 2007, 41, 323.
  • [14] VON MUNCH E., KELLER J., LANT P., NEWELL R., Mathematical modelling of prefermenters. I. Model development and verification, Water Res., 1999, 33, 2757.
  • [15] EATON A.D., CLESCERI L.S., RICE E.W., GREENBERG A.E., Standard methods for the examination of water and wastewater, 21st Ed., American Public Health Association, Washington 2005.
  • [16] GUNGOR K., MUFTUGIL M.B., OGEJO J.A., KNOWLTON K.F., LOVE N.G., Prefermentation of liquid dairy manure to support biological nutrient removal, Bioresource Technol., 2009, 100, 2124.
  • [17] HENZE M., GUJER W., MINO T., MATSUO T., WENTZEL M.C., MARAIS G.V.R., VAN LOOSDRECHT M.C.M., Activated sludge model No. 2d, ASM2d, Water Sci. Technol., 1999, 39, 165.
  • [18] MAIWALD T., TIMMER J., Dynamical modeling and multi-experiment fitting with PottersWheel, Bioinformatics, 2008, 24, 2037.
  • [19] RICO J.L., GARCIA H., RICO C., TEJERO I., Characterisation of solid and liquid fractions of dairy manure with regard to their component distribution and methane production, Bioresource Technol., 2007, 98, 971.
  • [20 ] KNOWLTON K.F., LOVE N.G., PARSONS C.A., Dietary phosphorus effects on characteristics of mechanically separated dairy manure, Trans. ASAE., 2005, 48, 1253.
  • [21] GUNGOR-DEMIRCI G., DEMIRER G.N., Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure, Bioresource Technol., 2004, 93, 109.
  • [22] WILKIE A.C., MULBRY W.W., Recovery of dairy manure nutrients by benthic freshwater algae, Bioresource Technol., 2002, 84, 81.
  • [23] CASTRILLON L., VAZQUEZ I., MARANON E., SASTRE H., Anaerobic thermophilic treatment of cattle manure in UASB reactors, Waste Manage. Res., 2002, 20, 350.
  • [24] WEN Z., FREAR C., CHEN S., Anaerobic digestion of liquid dairy manure using a sequential continuous-stirred tank reactor system, J. Chem. Technol. Biot., 2007, 82, 758.
  • [25] MOLLER H.B., SOMMER S.G., AHRING B.K., Separation efficiency and particle size distribution in relation to manure type and storage conditions, Bioresource Technol., 2002, 85, 189.
  • [26] KAPARAJU P.L.N., RINTALA J.A., Effects of solid-liquid separation on recovering residual methane and nitrogen from digested dairy cow manure, Bioresource Technol., 2008, 99, 120.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31c92b31-fd2c-40c3-8fa1-03cd88245e6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.