PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A pilot-scale condensing waste heat exchanger

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a calculation algorithm, design assumptions and results of studies concerning a flue gas/ water heat exchanger with the condensation of water vapor contained influe gas from the combustion of brown coal. The algorithm was used for design calculations of a pilot-scale heat exchanger with capacity of 380/312 kW. A cross-counter flow heat exchanger with capacity of 312 kW and coils made of PFA (perfluoroalkoxypolymer) was designed and installed. Waste heat is recoveredfrom flue gas produced by a pulverized brown coal fired sub-critical steam boiler operated in a power unit with capacity of370 MWe. The heat exchanger was theoretically divided into a non-condensing part (sensible heat recovery) and a part with the condensation of water vapor contained in flue gas (recovery of sensible and latent heat). The point of the division is the temperature of flue gas in the stream core (higher than nearthe pipe wall) where the condensation of water vapor occurs on the pipe surface. The heat transfer in the non-condensing part was calculated using the same formulas as for the economizerin a pulverized-fuel boiler, while the calculations of the heat and mass transfer in the condensing part were performed using the VDI algorithm. The results of the thermal calculations and the geometry of the heat exchanger together with the place of installation of the entire test rig are presented. The results of the calculation are then compared with the test results. Good correlation was achieved between the test results and the assumptions and results of the design calculations. Calculations for full scale exchanger for 370 MWe brown coal fired power unit showed a 1.18% net efficiency increase with improving wet flue gas desulphurization process (EUR 3.7 million annual savings of fuel consumption and CO2 emission).
Rocznik
Strony
263--271
Opis fizyczny
Bibliogr. 16 poz., fot., rys., tab., wykr.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Mechanical and Power Engineering, Poland
Bibliografia
  • 1. Jeong, K., Kessen, M. J., Bilirgen, H., and Levy, E. K. (2010) Analytical modeling of water condensation in condensing heat exchanger. International Journal of Heat and Mass Transfer, 53.
  • 2. Levy, E., Bilirgen, H., Jeong, K., Kessen, M., Samuelson, C., and Whitcombe, C. (2008) Recovery of Water from Boiler Flue Gas.
  • 3. Szulc, P., and Tietze, T. (2017) Recovery and energy use of flue gas from a coal power plant. Journal of Power Technologies, 97, 135-144.
  • 4. Colburn, A. P., and Hougen, O. A. (1934) Design of Cooler Condensers for Mixtures of Vapors with Non-condensing Gases.Industrial & Engineering Chemistry, 26 (11), 1178-1182.
  • 5. Ball, D. A., White, E. L., Lux, J. J., Razgaitis, R., and Markle, R. A. (1984) Condensing heat exchanger systems for residential/commercial furnaces and boilers. Phase III. DOE Contract Number AC02-76CH00016.
  • 6. Osakabe, M. (2000) Latent heat recovery fromoxygen-combustion flue gas. 35th Intersociety Energy Conversion Engineering Conference and Exhibit, 804-812.
  • 7. Jia, L., Peng, X. F., Yan, Y., Sun, J. D., and Li, X. P. (2001) Effects of water vapor condensation on the convection heat transfer of wet flue gas in a verticaltube. International Journal of Heat and Mass Transfer, 44 (22), 4257-4265.
  • 8. Liang, Y., Che, D., and Kang, Y. (2007) Effect of vapor condensation on forced convection heat transfer of moistened gas. Heat and Mass Transfer, 43 (7), 677-686.
  • 9. Shi, X., Che, D., Agnew, B., and Gao, J. (2011) An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust fluegases. International Journal of Heat and Mass Transfer, 54 (1-3), 606-615.
  • 10. Zhao, X., Fu, L., Yuan, W., Li, F., and Li, Q. (2016) The Potential and Approach of Flue Gas Waste Heat Utilization of Natural Gas for Space Heating. Procedia Engineering, 146, 494-503.
  • 11. Nobel, P., Vasconcelos, M., Tegnér, F., and Serrano, F. P. (2014) Designing a Flue Gas Condenser System for Lomma Power Plant. KET050: Feasibility Studies on Industrial Plants.
  • 12. Milewski, J., Bujalski, W., Wolowicz, M., Futyma, K., and Kucowski, J. (2015) Off-design operation of an 900 MW-class power plant with utilization of low temperature heat of flue gases. Journal of Power Technologies, 95, 221-227.
  • 13. (2010) VDI Heat Atlas, Springer Berlin Heidelberg.
  • 14. Rączka, P., and Wójs, K. (2014) Methods of Thermal Calculations for a Condensing Waste-Heat Exchanger. Chemical and Process Engineering, 35 (4), 447-461.
  • 15. Abriutin, А. А., and al, E. S. K. et (1998) Teplovoiraschet kotlov - normativni metod. (Thermal calculations of power boilers), WTI/CKTI Sankt-Peterburg.
  • 16. Rączka, P. (2016) Poprawa sprawności cieplnej bloków energetycznych poprzez wykorzystanie odzyskanego ciepła odpadowego. Rynek Energii, 122, 80-86.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-30ee6dd0-e054-4cb2-a99e-7ac12be6c3e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.