Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The biosorption process of three divalent metal ions – nickel, lead and zinc- from on calcium alginate from aqueous solution was studied, in single component systems. The biosorbent were investigated by Fourier Transform Infrared Spectroscopy. The batch mode experiments of the adsorption process were carried out as a function of pH, initial metal ions concentration, sorbent dosage and contact time. The adsorption influencing parameters for the maximum removal of metal ions were optimized. The experimental data were analyzed using the Langmuir, Freundlich, Langmuir-Freundlich, Koble-Corrigan and Redlich-Peterson models. The kinetic data of biosorption process were evaluated using pseudo-first and pseudo-second order equations. The Weber and Morris model was employed to interpret the metal ions diffusion in biosorption process.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
81--87
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Department of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Department of Toxicology, Papieża Pawła VI/3, 71-459 Szczecin, Poland
Bibliografia
- 1. Khomotimchenko, M., Kovalev, V., Kouvelos, E.P. & Khomotimchenko, Y. (2008). Comparative equilibrium studies of sorption of Pb(II) ions by sodium and calcium alginate. J. Environ. Sci. (China) 20, 827-829. DOI: 10.1016/S1001-0742(08)62133-6.
- 2. Papageorgiou, S.K., Katsaros, F.K., Kouvelos, E.P. & Kanellopoulos, N.K. (2009). Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data. J. Hazard. Mater. 162, 1347. DOI: 10.1016/j.jhazmat.2008.06.022.
- 3. Mata, Y.N., Blázquez, M.L., Ballester, A., González, F. & Muñoz, J.A. (2009). Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J. Hazard. Mater. 163, 555. DOI: 10.1016/j.jhazmat.2008.07.015
- 4. Stewart, T., Yau, J., Allen, M., Brabander, D. & Flynn, N. (2009). Impact of calcium-alginate density on equilibrium and kinetic of lead(II) sorption onto hydrogel beads. Colloid. Polym. Sci. 287, 1033, 1035- 1036. DOI: 10.1007/s00396-009-2058-4.
- 5. Oszczak, A. & Fuks, L. (2011). Sorpcja na alginianie wapnia wybranych radionuklidów występujących w odpadach promieniotwórczych. VI Krakowska Konferencja Młodych Uczonych 29.09-1.10 2011 (pp. 115-116). Kraków, Poland.
- 6. Ashraf, M.A., Mahmood, K. & Wajid, A. (2011). Study of low cost for biosorbent of heavy metal. International Conference on Food Engineering and Biotechnology IPCBEE Vol. 9, IACSIT Press 28-30 September 2011(pp. 60-61), Singapore.
- 7. Sankalia, M.G., Mashru, R.C. & Sutariya, V.B.(2005). Papain Entrapment in Alginate Beads for Stability Improvement and Site-Specific Delivery: Physicochemical Characterization and Factorial Optimization Using Neural Network Modeling. AAPS Pharm. Sci. Tech. 6(2), 218-219. DOI: 10.1208/pt060231.
- 8. Tores, E., Mata, Y.N., Blázquez, J.A., Muñoz, J.A., González, F. & Ballester, A. (2005). Gold and Silver uptake and nanoprecipitation on calcium alginate beads. Langmuir 21, 7955-7966. DOI: 10.1021/la046852k.
- 9. Song, D., Park, S.J., Kang, H.W., Park, S.B. & Han, J.I. (2013). Recovery Lithium(I), Strontium(II) and Lanthanum(III) using calcium alginate beads. J. Chem. Eng. Data 58, 2456-2457. DOI: 10.1021/je400317v.
- 10. Xiangliang, P., Jianlong, W. & Daoyong, Z. (2005). Biosorption of Pb(II) by Pleurotus ostreatus imbolized in calcium alginate gel. Process Biochem. 40, 2802. DOI: 10.1016/j. procbio.2004.12.007.
- 11. Daemi, H. & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Sci. Iranica 19, 2024-2025. DOI: 10.1016/j.scient.2012.10.005.
- 12. Romera, E., Fraquela, P., Ballester, A., Blázquez, J.A., Muñoz, J.A. & González, F. (2003). Biosorption equilibria with Spirogyra insignis, 15th International Biohydometallurgy Symposium. 19-19 September 2003, (pp.784). Athens, Hellas, Greece.
- 13. Bayramoğlu, G. & Arica, M.Y. (2009). Construction a hybrid biosorbent using Scenedesmus and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II): Kinetics and equilibrium studies. Bioresour. Technol. 100, 189. DOI: 10.1016/j. biortech.2008.05.050.
- 14. Abu Al-Rub, F., El-Naas, M., Benyahia, F. & Ashour, I. (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Proc. Biochem. 39, 1770. DOI: 10.1016/j.procbio.2003.08.002.
- 15. Nadeem, U. & Datta, M. (2014). Adsorption studies on zinc(II) ions on biopolymer composite beads of alginate-flyash. Eur. Chem. Bull. 3(7), 686-697. DOI: 10.1002/pc.22747.
- 16. Lagoa, R. & Rodrigues, J. (2009). Kinetic analysis of metal uptake by dry and gel alginate particles. Biochem. Eng. J. 46, 324. DOI: 10.1016/j.bej.2009.06.007.
- 17. Hamdaouia, O. & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J. Hazard. Mater. 147, 387. DOI: 10.1016/j.jhazmat.2007.01.021.
- 18. Kumar, P.S., Ethiraj, H., Venkat, A., Deepika, N., Nivedha, S., Vidhyadevi, T., Ravikumar, L. & Sivanesan, S. (2015). Adsorption kinetic, equilibrium and thermodynamic investigations of Zn(II) and Ni(II) ions removal by poly(azomethinethioamide) resin with pendentchlorobenzylidine ring. Pol. J. Chem. Technol. 17(3), 104-105. DOI: 10.1515/pjct-2015-0057.
- 19. Marques, T.L., Alves, V.N., Coelho, L.M. & Coelho, N.M. (2013). Assessment of the Use of Moringa oleifera Seeds for Removal of Manganese Ions from Aqueous Systems. Bioresources 8(2), 2743-2745. DOI: 10.1016/j.jhazmat.2009.08.011.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2fbb606e-d014-472e-ac69-95ce31718712