PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Current ripple reduction for finite control set model predictive control strategy of grid-tied inverter with reference current compensation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the finite control set model predictive control (FCS-MPC) strategy of the grid-tied inverter, the current ripple (CR) affects the selection of optimal voltage vectors, which leads to the increase of output current ripples. In order to solve this problem, this paper proposes a CR reduction method based on reference current compensation (RCC) for the FCS-MPC strategy of grid-tied inverters. Firstly, the influence of the CR on optimal voltage vector selection is analyzed. The conventional CR prediction method is improved, which uses inverter output voltage and grid voltage to calculate current ripples based on the space state equation. It makes up for the shortcomings that the conventional CR prediction method cannot predict in some switching states. The improved CR method is more suitable for the FCS-MPC strategy. In addition, the differences between the two cost functions are compared through visual analysis. It is found that the sensitivity of the square cost function to small errors is better than that of the absolute value function. Finally, the predicted CR is used to compensate the reference current. The compensated reference current is substituted into the square cost function to reduce the CR. The experimental results show that the proposed method reduces the CR by 47.3%. The total harmonic distortion (THD) of output current is reduced from 3.86% to 2.96%.
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. 28 poz., rys., tab, wz.
Twórcy
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
autor
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
  • Zhengzhou University of Light Industry, College of Electrical and Information Engineering, China
Bibliografia
  • [1] Jayalakshmi N. S., Gaonkar D. N., Karthik R. P., Prasanna P., Intermittent power smoothing control for grid connected hybrid wind/PV system using battery-EDLC storage devices, Archives of Electrical Engineering, vol. 69, no. 2, pp. 433–453 (2020), DOI: 10.24425/aee.2020.133036.
  • [2] Sun K., Wang X. S., Li Y. W., Nejabatkhah F., Yang M., Lu X., Parallel operation of bidirectional interfacing converters in a hybrid AC/DC microgrid under unbalanced grid voltage conditions, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1872–1884 (2017), DOI: 10.1109/TPEL.2016.2555140.
  • [3] Vekhande V., Kanakesh V. K., Fernandes B. G., Control of three-phase bidirectional current-source converter to inject balanced three-phase currents under unbalanced grid voltage condition, IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6719–6737 (2016), DOI: 10.1109/TPEL.2015.2503352.
  • [4] Li H., Xiao H., Yang G., Reconstructed current model predictive control of NPC three-level grid-tied converter with current sensor fault, IEEE Access, vol. 9, pp. 141098–141106 (2021), DOI: 10.1109/AC-CESS.2021.3119566.
  • [5] Guo L., Jin N., Gan C., Luo K., Hybrid voltage vector preselection-based model predictive control for two-level voltage source inverters to reduce the common-mode voltage, IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4680–4691 (2020), DOI: 10.1109/TIE.2019.2931257.
  • [6] Estévez-Bén Adyr A., Alfredo Alvarez-Diazcomas, Juvenal Rodruguez Reséndiz, Transformerless Multilevel Voltage-Source Inverter Topology Comparative Study for PV Systems, Energies, vol. 13, no. 12 (2020), DOI: 10.3390/en13123261.
  • [7] Héctor López, Nimrod Vázquez, Juvenal Rodriguez et al., Analysis and implementation of a finite-control-set by using model solution-based control for three-phase VSI, IET Power Electronics, vol. 10, no. 14, pp. 1832–1840 (2017), DOI: 10.1049/iet-pel.2016.0819.
  • [8] Estévez-Bén Adyr A. et al., A new predictive control strategy for multilevel current-source inverter grid-connected, Electronics, vol. 8, no. 8 (2019), DOI: 10.3390/electronics8080902.
  • [9] Tang M., Yang S., Zhang K. et al., Model predictive direct power control of energy storage quasi-Z-source grid-connected inverter, Archives of Electrical Engineering, vol. 71, no. 1, pp. 21–35 (2022), DOI: 10.24425/aee.2022.140195.
  • [10] Lu W., Li S., Chen W., Current-ripple compensation control technique for switching power converters, IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4197–4206 (2018), DOI: 10.1109/TIE.2017.2762622.
  • [11] Zeng Z., Li Z., Goetz S.M., Line current ripple minimization PWM strategy with reduced zero-sequence circulating current for two parallel interleaved three-phase converters, IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 6931–6943 (2020), DOI: 10.1109/TPEL.2019.2958878.
  • [12] Samani R., Beyragh D.S., Pahlevani M., A new grid-connected DC/AC inverter with soft switching and low current ripple, IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4480–4496 (2019), DOI: 10.1109/TPEL.2018.2863183.
  • [13] Zhang Y., Jiang H., Yang H., Model predictive control of PMSM drives based on a general discrete space vector modulation, IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1300–1307 (2021), DOI: 10.1109/TEC.2020.3036082.
  • [14] Liu T., Chen A., Qin C., Chen J., Li X., Double vector model predictive control to reduce common-mode voltage without weighting factors for three-level inverters, IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8980–8990 (2020), DOI: 10.1109/TIE.2020.2994876.
  • [15] Cao L. Z., Li Y. Y., Li X. Y., Guo L. L., Jin N., Cao H., A dual-vector modulated model predictive control method for voltage source inverters with a new duty cycle calculation method, Energies, vol. 13, no. 16, pp. 9204–9214 (2020), DOI: 10.3390/en13164200.
  • [16] Jin N., Chen M., Guo L., Li Y., Chen Y., Double-vector model-free predictive control method for voltage source inverter with visualization analysis, IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 10066–10078 (2022), DOI: 10.1109/TIE.2021.3128905.
  • [17] Kim S., Won I.J., Kim J., Lee K., DC-link ripple current reduction method for three-level inverters with optimal switching pattern, IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9204–9214 (2018), DOI: 10.1109/TIE.2018.2823662.
  • [18] Lu W., Li S., Chen W., Current-ripple compensation control technique for switching power converters, IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 4197–4206 (2018), DOI: 10.1109/TIE.2017.2762622.
  • [19] Zeng Z., Li Z., Goetz S. M., Line current ripple minimization PWM strategy with reduced zero-sequence circulating current for two parallel interleaved three-Phase converters, IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 6931–6943 (2020), DOI: 10.1109/TPEL.2019.2958878.
  • [20] Cervellini P., Antoszczuk P., Retegui R. G., Funes M., Current ripple amplitude measurement in multiphase power converters, IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6684–6688 (2017), DOI: 10.1109/TPEL.2017.2686784.
  • [21] Chang L., Jahns T. M., Prediction and evaluation of PWM-induced current ripple in IPM machines incorporating slotting, saturation, and cross-coupling effects, 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, pp. 1–6 (2017).
  • [22] Wang Z., Zhao Z., Hammad Uddin M., Zhao Y., Current ripple analysis and prediction for three-level T-type converters, 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA, pp. 7251–7257 (2018).
  • [23] Shen Z., Jiang D., Dead-time effect compensation method based on current ripple prediction for voltage-source inverters, IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 971–983 (2019), DOI: 10.1109/TPEL.2018.2820727.
  • [24] Karamanakos P., Geyer T., Guidelines for the Design of Finite Control Set Model Predictive Con- trollers, IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 7434–7450 (2020), DOI: 10.1109/TPEL.2019.2954357.
  • [25] Mirzaeva G., Goodwin G., Townsend C., A simple and effective strategy to reduce switching losses under FS-MPC based on dynamically changing voronoi diagrams, 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, pp. 1516–1521 (2017).
  • [26] Mirzaeva G., Goodwin G. C., McGrath B., A new understanding and improvements of finite set model predictive control in inverter applications, 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, pp. 1–10 (2015).
  • [27] Andrew E. T., Ahmed K. H., Holliday D., A new model predictive current controller for grid connected converters in unbalanced grids, IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9175–9186 (2022), DOI: 10.1109/TPEL.2022.3158016.
  • [28] Guo L., Chen M., Li Y., Wang P., Jin N., Wu J., Hybrid multi-vector modulated model predictive control strategy for voltage source inverters based on a new visualization analysis method, IEEE Transactions on Transportation Electrification (2022), DOI: 10.1109/TTE.2022.3161583.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c7c4c9d-5daf-4db9-9e62-647471226606
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.