PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of absorption refrigeration systems by the method of computational experiment design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this work is to present an energy analysis of different absorption refrigerating systems operating with diverse refrigerants. Also is applied the method of experimental design to optimize configurations proposed by the absorption pairs used and the operating conditions. Both acceptable coefficient of performance and low operating generator temperature are scrutinised. Therefore, a computer program is developed. An investigation of the thermodynamic properties is presented. Results show the coefficient of performance evolution versus respectively the evaporator temperature, temperature of condensation and generator temperature. A particular interest is devoted to the intermediate pressure effect on the performance of different systems. In order to better converge in the selection of the configuration and the refrigerant, which can ensure a high coefficient of performance associated to relatively low operating generator temperature the plan of experiments has been developed, taking in account all parameters influencing the system performance and the function of operating temperature. Results show that the refrigerating machine containing a compressor between the evaporator and the absorber has a coefficient of performance quite acceptable and that it can work at low generator temperature for about 60°C and using the NH3/LiNO3 as refrigerant.
Słowa kluczowe
Rocznik
Strony
85--102
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr., wz.
Twórcy
  • National Engineering School of Tunis
  • National Engineering School of Tunis
  • University of Tunis El Manar
Bibliografia
  • [1] Kang Y.T., Kunugi Y., Kashiwagi T.: Review of advanced absorption cycles: Performance improvement and temperature lift enhancement. Int. J. Refrig. 23(2000), 388–401.
  • [2] Boer D., Valles M., Coronas A.: Performance of double effect absorption compression cycles for air–conditioning using methanol–TEGDME and TFE–TEGDME systems as working pairs. Int J. Refrig. 21(1998), 542–555.
  • [3] Göktun S.: Performance analysis of a heat engine driven combined vapor compression-absorption-ejector refrigerator. En. Con. Mgmt. 41(2000), 1885–1895.
  • [4] Laouir A., Legoff P., Hornt J.M.: Cycle de frigopompes ŕ absorption en cascades matérielles–détermination du nombre d’étages optimal pour le mélange ammoniac–eau. Int J. Refrig. 25(2002), 136–148.
  • [5] Riffat S.B., Qiu G.: Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners. App. Th. Eng. 24(2004), 1979–1993.
  • [6] Alvares S.G., Trepp Ch.: Simulation of solar driven aqua-ammonia absorption refrigeration system. Int. J. Refrig. 10(1987), 40-49.
  • [7] Misra R.D., Sahoo P.K., Gupta A.: Application of the exergetic cost theory to the LiBr/H2O vapour absorption system. Energy 27(2002), 1009–1025.
  • [8] Mumah S.N., Adefila S.S. and Arinze E.A.: First law thermodynamic evaluation and simulation of ammonia-water absorption heat pump systems. En. con. Mgmt. 35(1994), 737–750.
  • [9] Kouremenos D.A.: A tutorial on reversed NH3/H2O absorption cycles for applications. Solar Energy 34(1985), 101–115.
  • [10] Hulten M., Berntsson T.: The compression/ absorption heat pump cycleconceptual design improvements and comparisons with the compression cycle. Int. J. Refrig. 25(2002), 487–497.
  • [11] Göktun S.: Optimal performance of an irreversible, heat engine-driven combined vapour compression and absorption refrigerator. App. Energy 62(1999), 67–79.
  • [12] Sachdeva G., Jain V., Kachhwaha S.S.: Energy Analysis of a vapor compression system cascaded with ammonia-water absorption. Int. J. Air-Cond. Refrig. 22(2014) doi:10.1142/S2010132514500072
  • [13] Saghiruddin, Siddiqui M.A.: Economic analysis of two stage dual fluid absorption cycle for Optimizing generator temperatures. En. Con. Mgmt. 42(2001), 407–437.
  • [14] Bouaziz N., Ben Iffa R., Kairouani L.: Performance of a water ammonia absorption system operating at three pressure levels. J.M.E.R. 3(2011), 120–127.
  • [15] Bouaziz N., Ben Iffa R., Kairouani L.: Avantage d’une configuration de machine á absorption operant á trois niveaux de pression. Mécaniq. Ind. 12(2011), 103–107.
  • [16] Charia M., Pilatte A., Bouidida M.: Machine frigorifique ŕ absorption (eauammoniac) fonctionnant avec des capteurs plans sur le site de Rabat. Rev. Int. Froid 14(1991), 297–303.
  • [17] Kumar S.: Experimental studies of a three-pressure absorption refrigeration cycle. Rev. Int. Froid 16 (1993), 31–39.
  • [18] Rodakis E.D., Antonopoulos K.A.: Thermodynamic cycle, correlations and nomograph for NH3-NaSCN absorption refrigeration systems. H. R. Syst. CHP 15(1995), 591–599.
  • [19] Zhu L., Gu J.: Second law-based thermodynamic analysis of ammonia/sodium Thiocyanate absorption system. Renew. Energ. 35(2010), 1940–1946.
  • [20] Kairouani L., Nahdi E., Iffa R.B.: Thermodynamic investigation of tow stage absorption refrigeration system connected by a compressor. Am. J. App. Sc. 2(2005), 1036–1041.
  • [21] Anand S., Gupta A., Tyagi S.K.: Exergy analysis of a LiBr–H2O vapor absorption refrigeration plant: A case study. Int. J. Air-Cond. Refrig. 22(2014), doi: 10.1142/S2010132514500102.
  • [22] Tarsitano A., Ciancio V., Coppi M.: Air-conditioning in residential buildings through absorption systems powered by solar collectors. En. Proc. 126(2017), 147–154.
  • [23] Petela K., Manfrida G., Szlek A.: Advantages of variable driving temperature in solar absorption chiller. Ren. En. 114B (2017), 716–724.
  • [24] Alobaid M., Hughes B., Calautit J.K., O’Connor D., Heyes A.: A review of solar driven absorption cooling with photovoltaic thermal systems. Ren. Sus. En. Rev. 76(2017), 728–742.
  • [25] Chen Y., Han W., Jin H.: Thermodynamic performance optimization of the absorption-generation process in an absorption refrigeration cycle. En. Con. Mgmt. 126(2016), 290–301.
  • [26] Misenheimer C.T., Terry S.D.: The development of a dynamic single effect, lithium bromide absorption chiller model with enhanced generator fidelity. En. Con. and Mgmt. 150(2017), 574–587.
  • [27] Bouaziz N., Iffa R.B., Nehdi E., Kairouani L.: Conception of an absorption refrigerating system operating at low enthalpy sources. Thermodynamics systems in equilibrium and non equilibrium; ISBN: 978-953-307-283-8, InTech. (2011).
  • [28] Brunin O., Feidt M., Hivet B.: Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. Int J. Refrig. 20(1997), 5, 308–318.
  • [29] Sun D.W.: Comparison of the performances of NH3-H20, NH3-LiNO3 and NH3- NaSCN absorption refrigeration systems. En. Con. Mgmt. 39(1998), 5-6, 357–368.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2c67bb1b-b4c5-4d05-81bf-e4e99882f528
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.