PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Near-surface geophysical characterization of gully erosion hazard-prone area in Calabar, southern Nigeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrical resistivity, i.e. electrical resistivity tomography (ERT) and direct current-resistivity sounding (DC-ERS), and ground penetrating radar (GPR) methods were deployed to assess a gully erosion site in Bacoco area of Calabar, Nigeria. The study aims to assess the mechanism and dynamics of the gully erosion conditions in the area based on shallow lithostrati-graphic evaluations. The results revealed good contrast in the operative properties (i.e. electrical resistivity and dielectric permittivity) between competent and weak zones along the profiles close to the gully head. The joint interpretations provided reliable shallow subsurface models and lithologies that consist predominantly of lateritic top cover and sands. However, the ERT model delineates the contrast between lithologies and demarcates the weak zones from the relatively competent zones, in contrast to the responses generated by the GPR technique. This joint interpretation approach minimizes the uncertainty due to the non-uniqueness problems common to the geophysical technique. Also, the geophysical interpretations were constrained using lithologic information from the gully walls and one-dimensional (1-D) DC-ERS inverted model to provide additional validity. Our findings suggest the influence of structural control on gully formation and demonstrate its contribution to the complex interactions with other drivers, such as seepages through porous media and high-energy runoff due to intense rainfall. The rapid, non-invasive and environmentally friendly characteristics of ERT and GPR techniques favour their applicability in assessing shallow subsurface environmental problems.
Czasopismo
Rocznik
Strony
85--96
Opis fizyczny
Bibliogr. 84 poz.
Twórcy
  • Department of Physics, Applied Geophysics Programme, University of Calabar, Calabar, Nigeria
  • Department of Physics, Applied Geophysics Programme, University of Calabar, Calabar, Nigeria
  • Earth and Space Sciences Department, University Kasdi Merbah Ouargla, 30000 Ouargla, Algeria
  • Department of Physics, Applied Geophysics Programme, University of Calabar, Calabar, Nigeria
  • Department of Physics, Applied Geophysics Programme, University of Calabar, Calabar, Nigeria
Bibliografia
  • 1. Abdulfatai IA, Okunlola AI, Akande WG, Momoh LO, Ibrahim KO (2014) Review of gully erosion in Nigeria: causes, impacts and possible solutions.
  • 2. Abidin MHZ, Saad R, Ahmad F, Wijeyesekera DC, Baharuddin MFT (2014) Correlation analysis between field electrical resistivity value (ERV) and basic geotechnical properties (BGP). Soil Mech Found Eng 51(3):117-125
  • 3. Akpan AE, Ebong ED, Emeka CN (2015) Exploratory assessment of groundwater vulnerability to pollution in Abi, southeastern Nigeria, using geophysical and geological techniques. Environ Monit Assess 187(4):1-18
  • 4. Akpan AE, Ekwok SE, Ebong ED (2016) Seasonal reversals in groundwater flow direction and its role in the recurrent Agwagune landslide problem: a geophysical and geological appraisal. Environ Earth Sci 75(5):1-17
  • 5. Akpan AE, Ekwok SE, Ebong ED, George AM, Okwueze EE (2018) Coupled geophysical characterization of shallow fluvio-clastic sediments in Agwagune, southeastern Nigeria. J Afr Earth Sc 143:67-78
  • 6. Allen PM, Arnold JG, Auguste L, White J, Dunbar J (2018) Application of a simple headcut advance model for gullies. Earth Surf Proc Land 43(1):202-217
  • 7. Bernatek-Jakiel A, Kondracka M (2016) Combining geomorphological mapping and near surface geophysics (GPR and ERT) to study piping systems. Geomorphology 274:193-209
  • 8. Bradford JM, Piest RF (2020) Erosional development of valley-bottom gullies in the upper midwestern United States. In: Thresholds in geomorphology. Routledge, pp 75-101
  • 9. Brandolini P, Pepe G, Capolongo D, Cappadonia C, Cevasco A, Conoscenti C, Marsico A, Vergari F, Del Monte M (2018) Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad Dev 29(9):3050-3068
  • 10. Brice JB (1966) Erosion and deposition in the loess-mantled Great plains, Medecine creek drainage basin, Nebraska. U.S. Geol Surv Prof Peper 352H:235-339
  • 11. Burian L, Šujan M, Stankoviansky M, Šilhavý J, Okai A (2017) Dependence of gully networks on faults and lineaments networks, case study from Hronska Pahorkatina Hill Land. Open Geosci 9(1):101-113
  • 12. Capozzoli L, Giampaolo V, Martino GD, Gomaa MM, Rizzo E (2022) Geoelectrical measurements to monitor a hydrocarbon leakage in the aquifer: simulation experiment in the lab. Geosci 12(10):360
  • 13. Carriere SD, Chalikakis K, Sénéchal G, Danquigny C, Emblanch C (2013) Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J Appl Geophys 94:31-41
  • 14. Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin. UK Geomorphol 125(4):472-484
  • 15. Coutinho JV, Porsani JL, Elis VR, Santos VRN, Ustra AT, Wendland E (2020) Applications of geophysical techniques to improve a groundwater conceptual model in an outcrop area of the Guarani aquifer system. Brazil Environ Earth Sci 79(18):1-11
  • 16. Davis JL, Annan AP (1989) Ground-penetrating radar for highresolution mapping of soil and rock stratigraphy 1. Geophys Prospect 37(5):531-551
  • 17. Diallo MC, Cheng LZ, Rosa E, Gunther C, Chouteau M (2019) Integrated GPR and ERT data interpretation for bedrock identification at Cléricy, Québec, Canada. Eng Geol 248:230-241
  • 18. Ebong ED, Akpan AE, Onwuegbuche AA (2014) Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. J Afr Earth Sc 96:99-109
  • 19. Ebong ED, Akpan AE, Emeka CN, Urang JG (2017) Groundwater quality assessment using geoelectrical and geochemical approaches: case study of Abi area, southeastern Nigeria. Appl Water Sci 7(5):2463-2478
  • 20. Ebong ED, Abong AA, Ulem EB, Ebong LA (2021a) Geoelectrical resistivity and geological characterization of hydrostructures for groundwater resource appraisal in the Obudu Plateau, Southeastern Nigeria. Nat Resour Res 30(3):2103-2117
  • 21. Ebong ED, George AM, Ekwok SE, Akpan AE, Asfahani J (2021b) 2D electrical resistivity inversion and ground penetrating radar investigation of near surface cave in New Netim area, southeastern Nigeria. Acta Geod Geoph 56(4):765-780
  • 22. Edet AE, Okereke CS (2002) Delineation of shallow groundwater aquifers in the coastal plain sands of Calabar area (Southern Nigeria) using surface resistivity and hydrogeological data. J Afr Earth Sc 35(3):433-443
  • 23. Edet AE, Worden RH (2009) Monitoring of the physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (Southeastern Nigeria). Environ Monit Assess 157(1):243-258
  • 24. Egboka BCE, Nwankwor GI, Orajaka IP (1990) Implications of palaeo-and neotectonics in gully erosion-prone areas of southeastern Nigeria. Nat Hazards 3(3):219-231
  • 25. Ekwok SE, Akpan AE, Kudamnya EA, Ebong ED (2020) Assessment of groundwater potential using geophysical data: a case study in parts of Cross River State, south-eastern Nigeria. Appl Water Sci 10(6):1-17
  • 26. El-Qady G, Hafez M, Abdalla MA, Ushijima K (2005) Imaging subsurface cavities using geoelectric tomography and groundpenetrating radar. J Cave Karst Stud 67(3):174-181
  • 27. Enabor EE, Sagau VO (1988) Ecological disasters in Nigeria: soil erosion (an introduction). In: Sagamu VO, Enabor EE, Ofomata GEK, Ologe KO, Oyebande L (eds) Ecological disasters in nigeria: soil erosion. Federal Ministry of Science and Technology, Lagos
  • 28. Fehdi C, Baali F, Boubaya D, Rouabhia A (2011) Detection of sinkholes using 2D electrical resistivity imaging in the Cheria Basin (north-east of Algeria). Arab J Geosci 4(1):181-187
  • 29. Fernández Águila J, McDonnell M, Flynn R, Ruffell A, Benner E, Etsias G, et al. (2020). Application of electrical resistivity tomography and ground penetrating radar to assess salinity in a coastal aquifer with tidally-driven saline recirculation cell. In: EGU general assembly conference abstracts, p 18138
  • 30. Fikos I, Vargemezis G, Zlotnicki J, Puertollano JR, Alanis PB, Pig-tain RC, Villacorte E, Malipot GA, Sasai Y (2012) Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bullet Volcanol 74(8):1821-1831
  • 31. Flores-Cervantes JH, Istanbulluoglu E, Bras RL (2006) Development of gullies on the landscape: a model of headcut retreat resulting
  • 32. from plunge pool erosion. J Geophys Res Earth Surf. https://doi. org/10.1029/2004JF000226
  • 33. Furman A, Ferré TP, Warrick AW (2003) A sensitivity analysis of electrical resistivity tomography array types using analytical element modelling. Vadose Zone J 2(3):416-423
  • 34. Gao Q, Shang Y, Hasan M, Jin W, Yang P (2018) Evaluation of a weathered rock aquifer using ERT method in South Guangdong. China Water 10(3):293
  • 35. García-Ruiz JM, Beguería S, Lana-Renault N, Nadal-Romero E, Cerda A (2017) Ongoing and emerging questions in water erosion studies. Land Degrad Dev 28(1):5-21
  • 36. Gelis C, Noble M, Cabrera J, Penz S, Chauris H, Cushing EM (2016) Ability of high-resolution resistivity tomography to detect fault and fracture zones: application to the Tournemire experimental platform, France. Pure Appl Geophys 173:573-589
  • 37. Gołębiowski T, Jarosińska E (2019) Application of GPR and ERT methods for recognizing of gypsum deposits in urban areas. Acta Geophys 67(6):2015-2030
  • 38. Golosov V, Yermolaev O, Rysin I, Vanmaercke M, Medvedeva R, Zaytseva M (2018) Mapping and spatial-temporal assessment of gully density in the Middle Volga region, Russia. Earth Surf Process Landf 43(13):2818-2834
  • 39. Gómez-Ortiz D, Martín-Velázquez S, Martín-Crespo T, Márquez A, Lillo J, López I, Carreňo F, Martín-González F, Herrera R, De Pablo MA (2007) Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). J Appl Geophys 62(3):287-300
  • 40. Goudie A (1990) The human impact on the natural environment, 3rd edn. MIT Press, Cambridge, MA, p 388
  • 41. Graf WL (1983) Downstream changes in stream power in the Henry Mountains, Utah. Ann Assoc Am Geogr 73(3):373-387
  • 42. Hagrey SA, Müller C (2000) GPR-study of pore water content and salinity in sand. Geophys Prospect 48:63-85
  • 43. Hasan M, Shang YJ, Jin WJ, Akhter G (2019) Investigation of fractured rock aquifer in South China using electrical resistivity tomography and self-potential methods. J Mt Sci 16(4):850-869
  • 44. Igbokwe JI, Akinyede JO, Dang B, Alaga T, Ono MN, Nnodu VC, Anike LO (2008) Mapping and monitoring of the impact of gully erosion in Southeastern Nigeria with satellite remote sensing and Geographic Information System. Int Archiv Photogramm Remote Sens Spat Inf Sci 37:865-872
  • 45. Igwe PU, Onuigbo AA, Chinedu OC, Ezeaku II, Muoneke MM (2017) Soil erosion: a review of models and applications. Int J Adv Eng Res Sci 4(12):237341
  • 46. Igwe O, John UI, Solomon O, Obinna O (2020) GIS-based gully erosion susceptibility modeling, adapting bivariate statistical method and AHP approach in Gombe town and environs Northeast Nigeria. Geoenviron Disasters 7(1):1-16
  • 47. Iloeje NP (2001) A new geography of Nigeria. Longman Publishers, Ibadan
  • 48. Ireland HA, Sharpe CFS, Eargle DH (1939) Principles of gully erosion in the Piedmont of South Carolina U.S. Department of Agriculture. Techn Bull 63:143
  • 49. Jain PK, Husain T (2021) Impact of soil erosion on agriculture. Int J Mod Agric 10(2):2053-2060
  • 50. Kampf SK, Faulconer J, Shaw JR, Lefsky M, Wagenbrenner JW, Cooper DJ (2018) Rainfall thresholds for flow generation in desert ephemeral streams. Water Resour Res 54(12):9935-9950
  • 51. Knox JC (1972) Valley alluviation in southwestern Wisconsin. Ann Assoc Am Geogr 62(3):401-410
  • 52. Kumar SV, Dhakate R, Amarender B, Sankaran S (2016) Application of ERT and GPR for demarcating the saline water intrusion in coastal aquifers of Southern India. Environ Earth Sci 75(5):1-17
  • 53. Láznička Z (1957) Gully erosion in valley of Jihlava near Ivančice. Works of CSAS 393-421
  • 54. le Roux J, van der Waal B (2020) Gully erosion susceptibility modelling to support avoided degradation planning. S Afr Geogr J 102(3):406-420
  • 55. Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nova 17(5):399-406
  • 56. Liao Q, Deng Y, Shi X, Sun Y, Duan W, Wu J (2018) Delineation of contaminant plume for an inorganic contaminated site using electrical resistivity tomography: comparison with direct-push technique. Environ Monit Assess 190(4):1-17
  • 57. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys Prospect 44(1):131-152
  • 58. Luo Y, Wei J, Tang Q, Gan F, Li J (2022) Water seepage and retention in purple soil bunds on sloping farmland in the Three Gorges Reservoir area, China. Land Degrad Devel 30:1410
  • 59. Łyskowski M, Mazurek E, Zitęk J (2014) Ground penerating radar investigation of limestone karst at the Odstrzelona cave in Kowala, Świętokrzyskie mountains, Poland. J Cave Karst Stud 76(3)
  • 60. McCloskey GL, Wasson RJ, Boggs GS, Douglas M (2016) Timing and causes of gully erosion in the riparian zone of the semi-arid tropical Victoria River, Australia: Management implications. Geomorphology 266:96-104
  • 61. McIvor I, Youjun H, Daoping L, Eyles G, Pu Z (2017) Agroforestry: conservation trees and erosion prevention.
  • 62. Melouah O, Hichem Z (2021) Utility of forward and inverse modeling in 2D electric tomography for hydrogeologic studies. Appl Water Sci 11(2):1-10
  • 63. Melouah O, Zerrouki H, Lopez Steinmetz RL (2020) Characterization of processes and mechanisms controlling ground water salinization in the Algerian Sahara. Arab J Geosci 13(18):1-31
  • 64. Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66(3-4):261-330
  • 65. Ocheli A, Ogbe OB, Aigbadon GO (2021) Geology and geotechnical investigations of part of the Anambra Basin, Southeastern Nigeria: implication for gully erosion hazards. Environ Syst Res 10(1):1-16
  • 66. Okorafor OO, Akinbile CO, Adeyemo AJ (2017) Soil erosion in south eastern Nigeria: a review. Sci Res J 5(6):30-37
  • 67. Olabode OP, Adeniji A (2022) Application of electrical resistivity in evaluating a section of road conditions—a case study in Ifaki-Oye-Ikole Ekiti Highway, Nigeria. Arab J Geosci 15(12):1-9
  • 68. Ortega-Ramírez J, Bano M, Cordero-Arce MT, Villa-Alvarado LA, Fraga CC (2020) Application of non-invasive geophysical methods (GPR and ERT) to locate the ancient foundations of the first cathedral of Puebla, Mexico. A case study. J Appl Geophys 174:103958
  • 69. Petronis MS, Awdankiewicz M, Valenta J, Rapprich V, Zebrowski JP, Karim E (2021) Eruptive and magma feeding system evolution of Sośnica Hill Volcano (Lower Silesia, SW Poland) revealed from Volcanological, Geophysical, and Rock Magnetic Data. J Volcanol Geoth Res 419:107367
  • 70. Piest RF, Bradford JM, Spomer RG (1975) Mechanisms of erosion and sediment movement from gullies. In Present and prospective technology for predicting sediment yields and sources, pp 162-176
  • 71. Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. CATENA 50(2-4):91-133
  • 72. Pulley S, Ellery WN, Lagesse JV, Schlegel PK, McNamara SJ (2018) Gully erosion as a mechanism for wetland formation: an examination of two contrasting landscapes. Land Degrad Dev 29(6):1756-1767
  • 73. Ramos-Scharrón CE, LaFevor MC (2016) The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. J Hydrol 533:168-179
  • 74. Reijers TJA, Petters SW (1987) Depositional environments and diagenesis of Albian carbonates on the Calabar Flank, SE Nigeria. J Pet Geol 10(3):283-294
  • 75. Reppert PM, Morgan FD, Toksöz MN (2000) Dielectric constant determination using ground-penetrating radar reflection coefficients. J Appl Geophys 43(2-4):189-197
  • 76. Rizzo E, Colella A, Lapenna V, Piscitelli S (2004) High-resolution images of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Phys Chem Earth Parts a/b/c 29(4-9):321-327
  • 77. Sasaki Y (1992) Resolution of resistivity tomography inferred from numerical SIMULATION1. Geophys Prospect 40(4):453-463
  • 78. Scheingross JS, Lamb MP (2017) A mechanistic model of waterfall plunge pool erosion into bedrock. J Geophys Res Earth Surf 122(11):2079-2104
  • 79. Singh M, Hartsch K (2019) Basics of soil erosion. In: Watershed hydrology, management and modeling. CRC Press, pp 1-61
  • 80. Tan SMA, Tonnizam ME, Saad R, Dan MM, Nordiana MM, Hazreek ZAM, Madun A (2018) Correlation of resistivity value with geotechnical N-value of sedimentary area in Nusajaya, Johor, Malaysia. J Phys Conf Ser 995(1):012079
  • 81. Tao M, Chen X, Cheng Q, Binley A (2022) Evaluating the joint use of GPR and ERT on mapping shallow subsurface features of karst critical zone in southwest China. Vadose Zone J 21(1):e20172
  • 82. Vander Velpen BPA (1988) RESIST software version 1.0. M. Sc research project. ITC, Delft, Netherlands. Copyright© 2004, ITC. IT-RSG/DSG
  • 83. Wei Y, Liu Z et al (2021) Can Benggang be regarded as gully erosion? CATENA 207:105648
  • 84. Zajícová K, Chuman T (2019) Application of ground penetrating radar methods in soil studies: a review. Geoderma 343:116-129
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2a874045-9148-4b2d-841d-bdbb4ee840ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.