PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference „Radon in the Environment” (2nd ; 25-29.05.2015 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
A unique, highly time-resolved, and synchronous three-year dataset of near-surface atmospheric radon-222 as well as soil heat flux and air temperature measurements at two sites (rural and urban) in Central Poland are investigated. The recognition of temporal variability of Rn-222 and selected meteorological variables in the urban and rural areas served to create two statistical models for estimation of this radionuclide concentration at 2 m a.g.l. The description of the relationships between the variables for individual months was established on the basis of an exponential function and an exponential function with time derivative of predictor to account for the hysteresis issue. The model with time derivative provided better results. The weakest fitting of modelled data to empirical ones is observed for the winter months. During subsequent seasons, air temperature as well as QG-driven (soil heat flux) models exhibited very high agreement with the empirical data (MBE, RMSE, MAE, and ‘index of agreement’ by Willmott were used to evaluate the models). A restriction in the use of QG for Rn-222 concentration was observed only in winter in the case of snow cover occurrence, which reduces the daily QG variability. A unique, highly time-resolved, and synchronous three-year dataset of near-surface atmospheric radon-222 as well as soil heat flux and air temperature measurements at two sites (rural and urban) in Central Poland are investigated. The recognition of temporal variability of Rn-222 and selected meteorological variables in the urban and rural areas served to create two statistical models for estimation of this radionuclide concentration at 2 m a.g.l. The description of the relationships between the variables for individual months was established on the basis of an exponential function and an exponential function with time derivative of predictor to account for the hysteresis issue. The model with time derivative provided better results. The weakest fitting of modelled data to empirical ones is observed for the winter months. During subsequent seasons, air temperature as well as QG-driven (soil heat flux) models exhibited very high agreement with the empirical data (MBE, RMSE, MAE, and ‘index of agreement’ by Willmott were used to evaluate the models). A restriction in the use of QG for Rn-222 concentration was observed only in winter in the case of snow cover occurrence, which reduces the daily QG variability.
Czasopismo
Rocznik
Strony
231--237
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Department of Meteorology and Climatology, University of Lodz, 88 Narutowicza Str., 90-139 Lodz, Poland, Tel.: +48 42 665 5959, Fax: +48 42 665 5951
autor
  • Department of Meteorology and Climatology, University of Lodz, 88 Narutowicza Str., 90-139 Lodz, Poland, Tel.: +48 42 665 5959, Fax: +48 42 665 5951
Bibliografia
  • 1. Turekian, K. K., Nozaki, Y., & Benninger, L. K. (1977). Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci., 5, 227–255.
  • 2. Lambert, G., Polian, G., Sanak, J., Ardouin, B., Buisson, A., Jegou, A., & le Roulley, J. C. (1982). Cycle du radon et de ses descentants: applicationà l’étude des échanges troposphère-stratosphère. Ann. Géophys., 38, 497–531.
  • 3. Eisenbud, M. (1987). Environmental radioactivity (3rd ed.). San Diego: Academic Press.
  • 4. Wigand, A., & Wenk, F. (1928). Der Gehalt der Luft an Radium-Emanation, nach MessungenbeiFlugzeugaufstiegen. Ann. Lpz. Phys., 86, 657–686.
  • 5. Pearson, J. E., & Jones, G. E. (1965). Emanation of radon 222 from soil and its use as a tracer. J. Geophys. Res., 70, 5279–5290.
  • 6. Prospero, J. M., & Carlson, T. N. (1970). Radon-222 in North Atlantic trade winds: its relationship to dust transport from Africa. Science, 167, 974–977.
  • 7. Sakashita, T., Murakami, T., Iida, T., Ikebe, Y., Suzuki, K., & Chno, M. (1994). The numerical model on three dimensional atmospheric transport with application to the transport of 222Rn. J. Atmos. Electr., 14, 57–62.
  • 8. Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R. -L., Balkanski, Y. J., & Beagley, S. R. (1997). Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short lived tracers. J. Geophys. Res., 102(D5), 5953–5970.
  • 9. Arnold, D., Vargas, A., Vermeulen, A. T., Verheggen, B., & Seibert, P. (2010). Analysis of radon origin by backward atmospheric transport modelling. Atmos. Environ., 44(4), 494–502.
  • 10. Chambers, S., Zahorowski, W., Matsumoto, K., & Uematsu, M. (2009). Seasonal variability of radon-derived fetch regions for Sado Island, Japan, based on 3 years of observations: 2002–2004. Atmos. Environ., 43(2), 271–279.
  • 11. Zahorowski, W., Chambers, S., Wang, T., Kang, C. H., Uno, I., Poon, S., Oh, S. N., Werczynski, S., Kim, J., & Henderson-Sellers, A. (2005). Radon-222 in boundary layer and free tropospheric continental outfl ow events at three ACE-Asia sites. Tellus B, 57(2), 124–140.
  • 12. Chambers, S., Williams, A. G., Zahorowski, W., Griffiths, A., & Crawford, J. (2011). Separating remote fetch and local mixing infl uences on vertical radon measurements in the lower atmosphere. Tellus B, 63(5), 843–859.
  • 13. Chambers, S. D., Williams, A. G., Crawford, J., & Griffiths, A. D. (2015). On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys. Discuss., 14(18), 25411–25452.
  • 14. Chambers, S. D., Wang, F., Williams, A. G., Xiaodong, D., Zhang, H., Lonati, G., Crawford, J., Griffiths, A. D., Ianniello, A., & Allegrini, I. (2015). Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor. Atmos. Environ., 107(2), 233–243.
  • 15. Griffiths, A. D., Parkes, S. D., Chambers, S. D., Mc-Cabe, M. F., & Williams, A. G. (2013). Improved mixing height monitoring through a combination of lidar and radon measurement. Atmos. Meas. Tech., 6(2), 207–218.
  • 16. Williams, A. G., Zahorowski, W., Chambers, S. D., & Griffiths, A. (2011). The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J. Atmos. Sci., 68(1), 155–174.
  • 17. Podstawczyńska, A. (2016). Differences of near--ground atmospheric Rn-222 concentration between urban and rural area with reference to microclimate diversity. Atmos. Environ., 126, 225–234.
  • 18. Winkler, R., Ruckerbauer, F., Trautmannsheimer, M., Tschiersch, J., & Karg, E. (2001). Diurnal and seasonal variation of the equilibrium state between short-lived radon decay products and radon gas in the ground-level air. Radiat. Environ. Biophys., 40, 115–123.
  • 19. Magalhães, M. H., Amaral, E. C. S., Sachett, I., & Rochedo, E. R. R. (2003). Radon-222 in Brazil: an outline of indoor and outdoor measurement. J. Environ. Radioact., 67(2), 131–143.
  • 20. Zhang, Liang, Zhang, Liguo, & Guo, Q. (2009). A long-term investigation of the atmospheric radon concentration in Beijing, China. J. Radiol. Prot., 29, 263–268.
  • 21. Chan, S. W., Lee, C. W., & Tsui, K. C. (2010). Atmospheric radon in Hong-Kong. J. Environ. Radioact., 101(6), 494–503.
  • 22. Florea, N., & Duliu, O. G. (2012). Eighteen years of continuous observation of radon and thoron progenies atmospheric activity. J. Environ. Radioact., 104(1), 14–23.
  • 23. Podstawczyńska, A., Kozak, K., Pawlak, W., & Mazur, J. (2010). Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions. Nukleonika, 55(4), 543–547.
  • 24. Podstawczyńska, A. (2013). Meteorological factors of radon concentration in the near ground air layer in an urban and rural environment. Łódź: University Press (in Polish).
  • 25. Kędziora, A. (1999). Fundamentals of agrometeorology. Warszawa: PWRiL Press (in Polish).
  • 26. Oke, T. R. (1995). Boundary layer climates. London: Methuen.
  • 27. Janik, M. (2005). Penetration of radon from the soil into the building. Computer modeling and verifi cation in residential buildings. Unpublished doctoral dissertation, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland. Retrieved January 2009, from http://www.ifj.edu.pl/publ/reports/2005/1966.pdf (in Polish).
  • 28. Mazur, J. (2008). Dynamics of the process of radon exhalation from ground in connection with meteorological parameters and soil properties. Unpublished doctoral dissertation, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland. Retrieved January 2009, from http://www.ifj.edu.pl/publ/reports/2008/2014.pdf (in Polish).
  • 29. Willmott, C. J. (1981). On the validation of models. Phys. Geogr., 2(2), 184–194.
  • 30. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc., 63, 1309–1312.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-270edd82-ee7c-445f-9825-9d46c98da21d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.