PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Multiple approach to analysis of H2O injection into a gas turbine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a thermodynamic analysis of the Brayton cycle and an upgrade to it involving the injection of H2O into the gas turbine cycle. Upgrades are generally considered to be environmentally-friendly solutions and lead to an increase in efficiency, but in the literature there is no clear answer as to what type of upgrade is the best. Computational Flow Mechanics codes have been used for numerical analysis of: the Brayton simple cycle, the Brayton cycle with water injection into the compressor and with regeneration prior to the combustion chamber, the STIG (steam injection gas turbine), and the CSTIG (combined steam injection gas turbine) system. Different ways of analyzing H2O injection into the gas turbine cycle are discussed.
Rocznik
Strony
200--205
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
autor
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] E. Directive, Directive 2010/75/eu of the european parliament and of the council of 24 november 2010 on industrial emissions (integrated pollution prevention and control), Official Journal of the European Union L 334 (2010) 17–119.
  • [2] R. Carapellucci, A. Milazzo, Repowering combined cycle power plants by a modified stig configuration, Energy Conversion and Management 48 (5) (2007) 1590–1600.
  • [3] A. Poullikkas, An overview of current and future sustainable gas turbine technologies, Renewable and Sustainable Energy Reviews 9 (5) (2005) 409–443.
  • [4] M. A. Saad, D. Y. Cheng, The new lm2500 cheng cycle for power generation and cogeneration, Energy conversion and management 38 (15) (1997) 1637–1646.
  • [5] P. Ziółkowski, M. Lema´ nski, J. Badur, L. Nastałek, Power augmentation of pge Gorzow’s gas turbine by steam injection – thermodynamic overview, Rynek Energii 98 (2) (2012) 161–167.
  • [6] K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Power enhancement of the brayton cycle by steam utilization, Archives of Thermodynamics 33 (3) (2012) 36–47.
  • [7] A. Chrzczonowski, K. Jesionek, B. J., P. Ziółkowski, Analysis of operation of combined stig installation, in: Producerea, Transportulsi Utilizarea Energiei, Volumul Conferintei Stiinta Modernasi Energia SME 2012, Universitatea Technicadin Cluj-Napoca, Cluj-Napoca, 2013, pp. 66–73.
  • [8] T. Srinivas, A. Gupta, B. Reddy, Sensitivity analysis of stig based combined cycle with dual pressure hrsg, International journal of thermal sciences 47 (9) (2008) 1226–1234.
  • [9] D. Y. Cheng, Regenerative parallel compound dual-fluid heat engine, US Patent 4,128,994 (Dec. 12 1978).
  • [10] V. de Biasi, Cln uprates 501 to 6 mw with under 18 ppm nox and zero co, Gas Turbine World 42 (4) (2012) 10–13.
  • [11] K. Jesionek, A. Chrzczonowski, J. Badur, M. Lemański, On the parametric analysis of performance of advanced cheng cycle, Zeszyty Naukowe Katedry Mechaniki Stosowanej Politechniki Śląskiej 23 (2004) 12–23, in Polish.
  • [12] G. Polonsky, M. Livshits, A. I. Selwynraj, S. Iniyan, L. Suganthi, A. Kribus, Annual performance of the solar hybrid stig cycle, Solar Energy 107 (2014) 278–291.
  • [13] W. Kordylewski, Combustion and Fuels, Wroclaw University of Technology Publ., 2000, in Polish.
  • [14] J. Skorek, J. Kalina, Gas turbines cogeneration units, WNT, Warszawa, 2005, in Polish.
  • [15] J. Badur, Numerical Modeling of Sustainable Combustion at Gas Turbine, IF-FM PAS, Gdańsk, 2003, in Polish.
  • [16] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical chp plant integrated with a carbon capture installation, Energy Conversion and Management 85 (2014) 750–763.
  • [17] V. de Biasi, Combined cycle heat rates at simple cycle $/kW plant costs, Gas Turbine World 43 (2) (2013) 22–29.
  • [18] F. Wang, J.-S. Chiou, Performance improvement for a simple cycle gas turbine genset - a retrofitting example, Applied Thermal Engineering 22 (10) (2002) 1105–1115.
  • [19] P. Ziółkowski, J. Badur, Clean gas technologies-towards zero-emission repowering of Pomerania, Transactions of the Institute of Fluid-Flow Machinery 124 (2012) 51–80.
  • [20] M. Jonsson, J. Yan, Humidified gas turbines - a review of proposed and implemented cycles, Energy 30 (7) (2005) 1013–1078.
  • [21] K. Nishida, T. Takagi, S. Kinoshita, Regenerative steam-injection gasturbine systems, Applied Energy 81 (3) (2005) 231–246.
  • [22] A. Chrzczonowski, Cheng cycle as proecological electrical and heat energy source, Ph.D. thesis, Wroclaw University of Technology, Wroclaw, in Polish (2006).
  • [23] J. Topolski, Combustion diagnosis in combined gas-steam cycle, Ph.D. thesis, IF-FM PASci, Gdań sk (2002).
  • [24] K. Jesionek, A. Chrzczonowski, P. Ziółkowski, J. Badur, Enhancement of the brayton cycle efficiency by water or steam utilization, Transactions of the Institute of Fluid-Flow Machinery 124 (2012) 93–109.
  • [25] J. A. Goliński, K. Jesionek, Combined air/steam power plants, Vol. 39, Maszyny Przepływowe, Gdańsk, 2009, in Polish.
  • [26] M. De Paepe, E. Dick, Technological and economical analysis of water recovery in steam injected gas turbines, Applied Thermal Engineering 21 (2) (2001) 135–156.
  • [27] A.W. Sinjawin, S. D. Frołow, W.W. Smancier, Optymalization of parameters of rotary condenser-separator in stig with recovery water system, in: Charkow, 1997, pp. 50–54, in Russian.
  • [28] K. Wójs, P. Szulc, T. Tietze, Odzysk i zagospodarowanie niskotemperaturowego ciepła odpadowego ze spalin wylotowych [Low-temperature waste heat recovery from exchaust gases], Wydawnictwo Naukowe PWN SA, 2015, in Polish.
  • [29] J. Badur, M. Karcz, R. Kucharski, M. Lemański, S. Kowalczyk, A. Wiśniewski, S. Lewandowski, Technical Economic and Environmental Aspects Combined Cycle Power Plants, Gdansk UT Press, Gdansk, 2005, Ch. Numerical modeling of degradation effects in a gas turbine silo-combustion chamber, pp. 135–143.
  • [30] J. Badur, P. Ziółkowski, D. Sławiński, S. Kornet, An approach for estimation of water wall degradation within pulverized-coal boilers, Energy 92 (2015) 142–152.
  • [31] J. Sowiński, Analysis of electricity production costs in the system power plant, Polityka Energetyczna 10 (2) (2007) 229–239, in Polish.
  • [32] R. Bartnik, Combined cycle power plant. Thermal and economic effectiveness, WNT, Warsaw (2009), 2012.
  • [33] M. P. Boyce, Gas turbine engineering handbook, Butterworth-Heinemann, Houston, 2002.
  • [34] Press office of Energa Group. URL http://media.energa.pl
  • [35] Ł. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a supercritical coal-fired chp plant integrated with an absorption carbon capture installation, Energy 64 (2014) 513–523.
  • [36] M. Brzęczek, M. Job, The economic comparison of combined cycle power plants without and with carbon capture installation, Rynek Energii 112 (3) (2014) 88–92, in Polish.
  • [37] J. Kotowicz, M. Brzęczek, M. Job, The thermo-economic analysis of the supercritical oxy-type unit integrated with the orc modules, Rynek Energii 118 (3) (2015) 64–71, in Polish.
  • [38] A. Skorek-Osikowska, L. Bartela, J. Kotowicz, Thermodynamic and economic evaluation of a co2 membrane separation unit integrated into a supercritical coal-fired heat and power plant, Journal of Power Technologies 95 (3) (2015) 201–210.
  • [39] J. Szargut, W. Stanek, Thermo-ecological optimization of a solar collector, Energy 32 (4) (2007) 584–590.
  • [40] Z. Gnutek, On the Goliński-Jesionek multistage combined air/steam systems with external combustion, Transactions of the Institute of Fluid-Flow Machinery 126 (2014) 33–54.
  • [41] D. Mikielewicz, J. Wajs, P. Ziółkowski, J. Mikielewicz, Utilisation of waste heat from the power plant by use of the orc aided with bleed steam and extra source of heat, Energy 97 (2016) 11–19.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-266533bf-6045-46fa-bf39-aea1e0cef9a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.