Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to focus on modeling temperature field in heterogeneous materials. The heat conductivity is adopted as the basic parameter for calculation. The extended finite element method (XFEM) is applied for simulation of temperature field. For one element that contains no material interface, the temperature function will be degenerated into that of the conventional finite element. For the element containing material interfaces, the standard temperature based approximation is enriched by incorporating level-set-based enrichment functions which model the interfaces. For unsteady temperature field, the improved precise integration method is adopted for the solution of the ordinary differential equations. The mesh generation can be considerably simplified and high-quality meshes are obtained; meanwhile the solution of good precision and stability can be achieved.
Czasopismo
Rocznik
Tom
Strony
199--208
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
autor
- Department of Engineering Mechanics, Hohai University, Nanjing 210098, China
Bibliografia
- [1] A. Asadpoure, S. Mohammadi, Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method, International Journal for Numerical Methods in Engineering 69 (10) (2007) 2150–2172.
- [2] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 (5) (1999) 601–620.
- [3] J.V. Cox, An extended finite element method with analytical enrichment for cohesive crack modeling, International Journal for Numerical Methods in Engineering 78 (1) (2009) 48–83.
- [4] R. Duddu, S. Bordas, D. Chopp, B. Moran, A combined extended finite element and level set method for bio-film growth, International Journal for Numerical Methods in Engineering 74 (5) (2008) 848–870.
- [5] T.P. Fries, A corrected XFEM approximation without problems in blending elements, International Journal for Numerical Methods in Engineering 75 (5) (2008) 503–532.
- [6] T.P. Fries, A. Zilian, On time integration in the XFEM, International Journal for Numerical Methods in Engineering 79 (1) (2009) 69–93.
- [7] A. Gerstenberger, W.A. Wall, An eXtended finite element method/Lagrange multiplier based approach for fluid-structure interaction, Computer Methods in Applied Mechanics and Engineering 197 (19–20) (2008) 1699–1714.
- [8] S. Groß, A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension, Journal of Computational Physics 224 (1) (2007) 40–58.
- [9] Y.X. Gu, B.S. Chen, H.W. Zhang, Precise time-integration with dimension expanding method, Acta Mechanica Sinica 32 (4) (2000) 447–456.
- [10] R. Loge, M. Bernacki, H. Resk, L. Delannay, H. Digonnet, Y. Chastel, T. Coupez, Linking plastic deformation to recrystallization in metals, using digital microstructures, Philosophical Magazine 88 (30–32) (2009) 3691–3712.
- [11] L. Madej, P. Cybulka, K. Perzynski, L. Rauch, Numerical analysis of strain inhomogeneities during deformation on the basis of the three dimensional Digital Material Representation, Computer Methods in Material Science 11 (2) (2011) 375–380.
- [12] J.M. Melenk, I. Babuska, The partition of unity finite element method: basic theory and applications, Computer Methods in Applied Mechanics and Engineering 139 (1–4) (1996) 289–314.
- [13] T. Menouillard, J. Rethore, N. Moes, et al., Mass lumping strategies for X-FEM explicit dynamics: application to crack propagation, International Journal for Numerical Methods in Engineering 74 (3) (2008) 447–474.
- [14] N. Moes, M. Cloirec, P. Cartraud, J.F. Remacle, A computational approach to handle complex microstructure geometries, Computer Methods in Applied Mechanics and Engineering 192 (28–30) (2003) 3163–3177.
- [15] V.P. Nguyen, M. Stroeven, L.J. Sluys, Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations, Computer Methods in Applied Mechanics and Engineering 201–204 (2012) 139–156.
- [16] D. Rabinovich, D. Givoli, S. Vigdergauz, Crack identification by ‘arrival time’ using XFEM and a genetic algorithm, International Journal for Numerical Methods in Engineering 77 (3) (2009) 337–359.
- [17] B.G. Smith, B.L. Vaughan Jr., D.L. Chopp, The extended finite element method for boundary layer problems in bio-film growth, Communications in Applied Mathematics and Computer Science 2 (1) (2007) 35–56.
- [18] F.L. Stazi, E. Budyn, J. Chessa, T. Belytschko, An extended finite element method with higher-order elements for curved cracks, Computational Mechanics 31 (1–2) (2003) 38–48.
- [19] H. Waisman, T. Belytschko, Parametric enrichment adaptivity by the extended finite element method, International Journal for Numerical Methods in Engineering 73 (12) (2008) 1671–1692.
- [20] Y.L. Wu, Fundamentals of Computation Solid Mechanics, Science Press, Beijing, 2003.
- [21] Q.Z. Xiao, B.L. Karihaloo, Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, International Journal for Numerical Methods in Engineering 66 (9) (2006) 1378–1410.
- [22] T.T. Yu, P. Liu, Improved implementation of the extended finite element method for stress analysis around cracks, Archives of Civil and Mechanical Engineering XI (3) (2011) 787–805.
- [23] T.T. Yu, L.L. Wan, Extended finite element method for heat transfer problems in heterogeneous material, Chinese Journal of Computational Mechanics 28 (6) (2011) 884–890.
- [24] W.X. Zhong, F.W. Williams, A precise time step integration method, Journal of Mechanical Engineering Science 208 (6) (1994) 427–430.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-255d4d8e-2d10-47b2-84e6-2dab8c4cee02