PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Markov processes conditioned to never exit a subspace of the state space

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study Markov processes never exiting (NE) a subspace A of the state space E or, in other words, Markov processes conditioned to stay in the subspace A. We show how the knowledge of the exact asymptotics of the tail distribution of the exit time helps to find the suitable exponential martingale, which, in turn, serves for the change of measure. Under the new probability measure the process is the sought for never exiting one the subspace A. We also find its extended generator and study relationships between the invariant measure (INE) and the quasi-stationary (QS) distribution. We analyze in detail the PDMP processes.
Rocznik
Strony
339--353
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
  • Mathematical Institute, Utrecht University, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands
autor
  • Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
Bibliografia
  • [1] E. Arjas, E. Nummelin and R. L. Tweedie, Semi-Markov processes on a general state space: α-theory and quasi-stationarity, J. Austral. Math. Soc. Ser. A 30 (1980), pp. 187-200.
  • [2] S. Asmussen, Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve process and the GI/G/1 queue, Adv. in Appl. Probab. 14 (3982), pp. 143-170.
  • [3] S. Asmussen, Ruin Probabilities, World Scientific, Singapore 2000.
  • [4] S. Asmussen, Applied Probability and Queues, second ed., Springer, New York 2003.
  • [5] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge 1996.
  • [6] J. Bertoin and R. A. Doney, On conditioning a random walk to stay nonnegative, Ann. Probab. 22 (1994), pp. 2152-2167.
  • [7] J. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge 1987.
  • [8] A. N. Borodin and P. Salminen, Handbook of Brownian Motion - Facts and Formulae, Birkhäuser, Basel 1996.
  • [9] L. Chaumont, Conditionings and path decompositions for Lévy processes, Stochastic Process. Appl. 64 (1) (1996), pp. 39-54.
  • [10] M. H. A. Davis, Markov Models and Optimization, Chapman and Hall, London 1993.
  • [11] R. A. Doney, On the asymptotics of first passage times for transient random walks, Z. Wahrsch. Verw. Gebiete 81 (1989), pp. 239-246.
  • [12] H. J. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York 1986.
  • [13] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York 1971.
  • [14] P. A. Ferrari, H. Kesten, S. Martinez and P. Picco, Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab. 23 (1995), pp. 501-521.
  • [15] P. Glynn and H. Thorisson, Two-sided taboo limits for Markov processes and associated perfect simulation, Stochastic Proc. Appl. 91 (2001), pp. 1-20.
  • [16] P. Glynn and H. Thorisson, Structural characterization of taboo-stationarity for general processes in two-sided time, Stochastic Proc. Appl. 102 (2002), pp. 311-318.
  • [17] D. J. Grabiner, Brownian motion in a Wayl chamber, non-colliding particles, and random matrices, Ann. Inst. H. Poincaré 35 (1999), pp. 177-204.
  • [18] S. D. Jacka and G. O. Roberts, Weak convergence of conditioned processes on a countable state space, J. Appl. Probab. 32 (1995), pp. 902-916.
  • [19] I. Karatzas and E. S. Shreve, Brownian motion and stochastic calculus, second ed, Springer, New York 1991.
  • [20] R. W. Keener, Limit theorems for random walks conditioned to stay positive, Ann. Probab. 20 (1992), pp. 801-824.
  • [21] H. Kesten, A ratio limit theorem for (sub) Markov chains on {1, 2,...) with bounded jumps, Adv. in Appl. Probab. 27 (1995), pp. 652-691.
  • [22] F. B. Knight, Brownian local times and taboo processes, Trans. Amer. Math. Soc. 143 (1969), pp. 173-185.
  • [23] W. König, N. O'Connell and S. Roch, Norr-colliding random walks, tandem queues and discrete ensembles, Elect. J. Probab. 7 (2002), pp. 1-24.
  • [24] E. K. Kyprianou, On the quasi-stationary distribution of the virtual waiting time in queues with Poisson arrivals, J. Appl. Probab. 8 (1971), pp. 494-507.
  • [25] A. Lambert, Completely asymmetric Lévy processes confined in a finite interval, Ann. Inst. H. Poincaré. Probab. Statist. 36 (2000), pp. 251-274.
  • [26] S. Martinez and J. S. Martin, Quasi-stationary distributions for a Brownian motion with drift and associated limit laws, J. Appl. Probab. 31 (1994), pp. 911-920.
  • [27] M. G. Nair and P. K. Pollett, On the relationship between μ-invariant measures and guasi-stationary distributions for continuous-time Markov chains, Adv. in Appl. Probab. 25 (1) (1993), pp. 82-102.
  • [28] Z. Palmowski and T. Rolski, A technique for exponential change of measure for Markov processes, Bernoulli 8 (2002), pp. 767-785.
  • [29] R. G. Pinsky, On the convergence of diffusion processes conditioned to remain in a bounded region for a large time to limiting positive recurrent diffusion processes, Ann. Probab. 13 (1985), pp. 363-378.
  • [30] N. U. Prabhu, Stochastic Storage Processes, Springer, New York 1980.
  • [31] T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance, Wiley, Chichester 1999.
  • [32] P. Touminen and R. L. Tweedie, Exponential decay and ergodicity of general Markov processes and their discrete skeletons, Adv. in Appl. Probab. 11 (1979), pp. 784-803.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24123cf1-02cf-4c28-aaa0-2d812b3600dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.