PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Draft JIG structure design for measuring deformation of thin-walled robotic or conveyor components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the general function, the division and the description of the main jig parts. It gives account of the basics and principles of a measuring jig structure using CAD applications. The main part delves into design of individual measurement jig options for measuring deformations of thin-walled robotic and conveyor components. Tension and stress analyses for each option have been performed. Subsequent to stress analysis, a suitable option was selected, with a description of its main parts, the production process and the necessary production equipment. Finally, the jig produced for the purpose of measuring deformation of thin-walled robotic and conveyor components is presented.
Słowa kluczowe
Twórcy
  • Technical University of Kosice, Faculty of Manufacturing Technologies with seat in Presov, Bayerova 1, 08001, Slovakia
autor
  • Technical University of Kosice, Faculty of Manufacturing Technologies with seat in Presov, Bayerova 1, 08001, Slovakia
  • Technical University of Kosice, Faculty of Manufacturing Technologies with seat in Presov, Bayerova 1, 08001, Slovakia
  • Kielce University of Technology, Katedra Technologii Mechanicznej i Metrologii, Kielce, Poland
  • Levoča, Francisciho 33, 082 71, Slovakia
Bibliografia
  • 1. Liptai, P., et al.: Check measurements of magnetic flux density: Equipment design and the determination of the confidence interval for EFA 300 measuring devices, Meas. J. Int. Meas. Confed. 111 (2017) 51–59.
  • 2. Dębski, H., et al.: Numerical and experimental analysis of the progressive gear body with the use of finite-element method Badania numeryczne i doświadczalne konstrukcji chwytacza progresywnego z wykorzystaniem metody elementów skończonych *, 17 (2015) 544–550.
  • 3. Molnar, V., et al.: Influence of tension force asymmetry on distribution of contact forces among the conveyor belt and idler rolls in pipe conveyor during transport of particulate solids, Measurement. 63 (2015) 120–127.
  • 4. Lehocka, D.: Comparison of the influence of acoustically enhanced pulsating water jet on selected surface integrity characteristics of CW004A copper and CW614N brass, Measurement. 110 (2017) 230–238.
  • 5. Honus, S., et al.: The effect of the number of conveyor belt carrying idlers on the failure of an impact place: A failure analysis, A Fail. Anal. (2017).
  • 6. Mantic, M.:, et al.: Influence of selected digitization methods on final accuracy of 3D model, (2016) 475–480.
  • 7. Kral, J.,et al.: Creation of 3D parametric surfaces in CAD systems., Acta Mech. Slovaca 2008. (n.d.) 223–228.
  • 8. Tor-Świątek, A., et al.: Quantitative Assessment of the Microscopic Structure of Extruded and Injected Low-Density Polyethylene Modified with Microspheres by Image Analysis, Cell. Polym. 35 (2016) 67–84.
  • 9. Fedorko, G., et al.: Failure analysis of irreversible changes in the construction of rubber- textile conveyor belt damaged by sharp-edge material impact, Eng. Fail. Anal. 39 (2014) 135– 148.
  • 10. Fedorko, G., et al.: Failure analysis of irreversible changes in the construction of the damaged rubber hoses, Eng. Fail. Anal. 58 (2015) 31–43.
  • 11. Molnár, V., et al.: Monitoring of dependences and ratios of normal contact forces on hexagonal idler housings of the pipe conveyor, Measurement. 64 (2015) 168–176.
  • 12. Fedorko, G., et al.: Transportation of ore by belt conveyors with an application of conveyor impact plates, Metal. Int. 18 (2013) 226–228.
  • 13. Baron, P., et al.: Research and application of methods of technical diagnostics for the verification of the design node, Measurement. 94 (2016) 245–253.
  • 14. Aslani, F., et al.: Behaviour and design of hollow and concrete-filled spiral welded steel tube columns subjected to axial compression, J. Constr. Steel Res. 128 (2016) 261–288.
  • 15. Fang, G.W.R. Gao, X.G. Zhang, Finite Element Simulation and Experiment Verification of Rolling Forming for the Truck Wheel Rim, Int. J. Precis. Eng. Manuf. 16 (2015) 1509–1515.
  • 16. Jonsson, B., et al.: Weight optimization and fatigue design of a welded bogie beam structure in a construction equipment, Eng. Fail. Anal. 19 (2012) 63–76.
  • 17. Troive, L., et al.: Springback compensation for a vehicle’s steel body panel, Int. J. Comput. Integr. Manuf. 31 (2017) 152–163.
  • 18. Murčinková, Z., et al.: Research and analysis of stress distribution in multilayers of coated tools, Int. J. Mater. Res. 108 (2017) 495–506.
  • 19. Futáš, P., et al.: The GIST of thermal stresses of cast iron castings, Manuf. Technol. 13 (2012) 173–179.
  • 20. J. Strohmandl, Use of simulation to reduction of faulty products, UPB Sci. Bull. Ser. D Mech. Eng. 76 (2014) 223–230.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1fccb78c-6c4e-4c66-b881-73b312bd9a45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.