PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of harvest date on structural carbohydrates and lignin content in meadow sward in different pluvio-thermal conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The content of structural carbohydrates and lignin are important assessment criteria of the feed value of meadow plants. It is affected by many independent factors, including among others its development stage during the harvest as well as climatic conditions, especially the amount of rainfall. During the years 2014-2016, plant samples were harvested at weekly intervals, respectively five times from late April to late May. The effect of harvest date on cellulose, hemicelluloses and lignin contents was evaluated. The chemical composition of plants was varied, depending not only on harvest date but also on the year of study. Regardless of the course of meteorological conditions in subsequent growing seasons, the increase of cellulose (from 236.5 to 297.9 g∙kg-1 DM), hemicelluloses (from 159.3 to 210.8 g∙kg-1 DM), and lignin (from 31.5 to 43.1 g∙kg-1 DM) in the following dates of harvest were observed. These parameters were also positively correlated with the total rainfall from the begging of vegetation season to the date of plants sampling (R2 = 0.65, 0.12 and 0.44 for cellulose, hemicelluloses and lignin, respectively), and with the average daily air temperature in the moment of harvest (R2 = 0.66, 0.32 and 0.52 for cellulose, hemicelluloses and lignin, respectively). The cellulose and lignin content, regardless of the harvest date, were significantly higher in the first year of the study (2014), when moisture conditions for plant development were optimal.
Wydawca
Rocznik
Tom
Strony
60--66
Opis fizyczny
Bibliogr. 36 poz., tab., wykr.
Twórcy
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  • Poznań University of Life Sciences, Department of Grassland and Natural Landscape Sciences, Poznań, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
Bibliografia
  • BOOB M., ELSAESSER M., THUMM U., HARTUNG J., LEWANDOWSKI I. 2019. Harvest time determines quality and usability of biomass from lowland hay meadows. Agriculture. Vol. 9(9), 198. DOI 10.3390/agriculture9090198.
  • BORAWSKA-JARMUŁOWICZ B., MASTALERCZUK G., JANICKA M., WRÓBEL B. 2022. Effect of silicon-containing fertilizers on the nutritional value of grass–legume mixtures on temporary grass lands. Agriculture. Vol. 12(2), 145. DOI 10.3390/agriculture12020145.
  • BUXTON D.R. 1996. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Animal Feed Science and Technology. Vol. 59(1–3) p. 37–49. DOI 10.1016/0377-8401(95)00885-3.
  • BUXTON D.R., BRASCHE M.R. 1991. Digestibility of structural carbohydrates in cool-season grass and legume forages. Crop Science. Vol. 31(5) p. 1338–1345. DOI 10.2135/cropsci1991.0011183X003100050052x.
  • CANTAREL A.A.M., BLOOR J.M.G., SOUSSANA J.F. 2013. Four years of simulated climate change reduces above-ground productivity and alters functional diversity in a grassland ecosystem. Journal of Vegetation Science. Vol. 24(1) p. 113–126. DOI 10.1111/j.1654-1103.2012.01452.x.
  • COLLINS M., FRITZ J.O. 2003. Forage quality. In: Forages. An introduction to grassland agriculture. Eds. R.F. Barnes, C.J. Nelson, M. Collins, K.J. Moore. 6th ed. Vol. 1. Hoboken. Wiley-Blackwell p. 363–390.
  • ČIMO J., ŠINKA K., TÁRNÍK A., AYDIN E., KIŠŠ V., TOKOVÁ L. 2020. Impact of climate change on vegetation period of basic species of vegetables in Slovakia. Journal of Water and Land Development. No. 47 p. 38–46. DOI 10.24425/jwld.2020.135030.
  • ELGERSMA A., SØEGAARD K. 2018. Changes in nutritive value and plants yield during extended growth intervals in grass-legume mixtures: Effects of species, maturity at harvest, and relationships between productivity and components of feed quality. Grass and Forage Science. Vol. 73(1) p. 78–93. DOI 10.1111/gfs.12287.
  • ERICE G., IRIGOYEN J.J., PÉREZ P., MARTÍNEZ-CARRASCO R., SÁNCHEZ-DÍAZ M. 2006. Effect of elevated CO 2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiologia Plantarum. Vol. 126(3) p. 458–68. DOI 10.1111/j.1399-3054.2006.00599.x.
  • GABRYSZUK M., BARSZCZEWSKI J., WRÓBEL B. 2021. Characteristics of grasslands and their use in Poland. Journal of Water and Land Development. No. 51 p. 243–249. DOI 10.24425/jwld. 2021.139035.
  • GOLIŃSKI P., CZERWIŃSKI , M., JØRGENSEN M., MØLMANN J.A.B., GOLIŃSKA B., T AFF G. 2018. Relationship between climate trends and grassland yield across contrasting European locations. Open Life Sciences. Vol. 13(1) p. 589–598. DOI 10.1515/biol-2018-0070.
  • HALIM R.A., BUXTON D.R., HATTENDORF M.J., CARLSON R.E. 1989. Waterstress effects on alfalfa forage quality after adjustment for maturity differences. Agronomy Journal. Vol. 81(2) p. 189–194. DOI 10.2134/agronj1989.00021962008100020010x.
  • IUSS Working Group WRB 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report. No. 106. Rome. FAO. E-ISBN 978-92-5-108370-3 pp. 192.
  • KABAŁA C., CHARZYŃSKI P., CHODOROWSKI J., DREWNIK M., GLINA B., GREINERT A., ..., WAROSZEWSKI J. 2019. Polish soil classification: Principles, classification scheme and correlations. Soil Science Annual. Vol. 70(2) p. 71–97.
  • KARABULUT A., CANBOLAT O., KAMALAK A. 2006. Effect of maturity stage on the nutritive value of birdsfoot trefoil (Lotus corniculatus L) hays. Lotus Newsletter. Vol. 36(1) p. 11–21.
  • KARAYILANLI E., AYHAN V. 2016. Investigation of feed value of alfalfa (Medicago sativa L.) harvested at different maturity stages. Legume Research – An International Journal. Vol. 39(2) p. 237–247. DOI 10.18805/lr.v0iOF.9292.
  • KASPERSKA-WOŁOWICZ W., ROLBIECKI S., SADAN H.A., ROLBIECKI R., JAGOSZ B., STACHOWSKI P., LIBERACKI D., BOLEWSKI T., PRUS P., PAL-FAM F. 2021. Impact of the projected climate change on soybean water needs in the Kuyavia region in Poland. Journal of Water and Land Development. No. 51 p. 199–207. DOI 10.24425/jwld.2021.139031.
  • KLAPP R. 1962. Łąki i pastwiska [Meadows and pastures]. Warszawa. PWRiL pp. 600.
  • KNAPP A., SMITH M.D. 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science. Vol. 291 (5503) p. 481–484. DOI 10.1126/science.291.5503.481.
  • KUOPPALA K., AHVENJÄRVI S., RINNE M., VANHATALO A. 2009. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. P. 2. Dry matter intake and cell wall digestion kinetics. Journal of Dairy Science. Vol. 92(11) p. 5634–5644. DOI 10.3168/jds.2009-2250.
  • KÜCHENMEISTER K., KÜCHENMEISTER F., KAYSER M., WRAGE-MÖNNIG N., ISSELSTEIN J. 2013. Influence of drought stress on nutritive value of perennial forage legumes. International Journal of Plant Production. Vol. 7(4) p. 693–710. DOI 10.22069/ijpp.2013.1265.
  • LARSEN K.S., ANDRESEN L.C., BEIER C., JONSASSON S., ALBERT K.R., AMBUS P., ..., STEVNBAK K. 2011. Reduced N cycling in response to drought, warming, and elevated CO 2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology. Vol. 17(5) p. 1884–1899. DOI 10.1111/j.1365-2486.2010.02351.x.
  • MARKOVIĆ J., ŠTRBANOVIĆ R., TERZIC D., STANISAVLJEVIĆ R., ĐOKIĆ D., VASIĆ T., ANĐELKOVIĆ B. 2011. Estimation of red clover (Trifolium pratense L.) forage quality parameters depending on the stage of growth. Biotechnology in Animal Husbandry. Vol. 27(4) p. 1563–1569. DOI 10.2298/BAH1104563M.
  • PN-EN ISO 12099: 2017-10. Pasze, ziarno zbóż i produkty przemiału – Wytyczne stosowania spektrometrii bliskiej podczerwieni [Feed, cereal grains and milling products – Guidelines for the use of near-infrared spektrometry]. Warszawa. PKN pp. 36.
  • RAICH J.W., TUFEKCIOGUL A. 2000. Vegetation and soil respiration: Correlations and controls. Biogeochemistry. Vol. 48 p. 71–90. DOI 10.1023/A:1006112000616.
  • REINÉ R., ASCASO J., BARRANTES O. 2020. Nutritional quality of plant species in Pyrenean hay meadows of high diversity. Agronomy. Vol. 10(6), 883. DOI 10.3390/agronomy10060883.
  • RINNE M., JAAKKOLA S., KAUSTELL K., HEIKKILÄ T., HUHTANEN P. 1999. Silages harvested at different stages of grass growth v. concentrate foods as energy and protein sources in milk production. Animal Science. Vol. 69(1) p. 251–263. DOI 10.1017/S1357729800051286.
  • RINNE M., NYKÄNEN A. 2000. Timing of primary growth harvest affects the yield and nutritive value of timothy-red clover mixtures. Agricultural and Food Science in Finland. Vol. 9 p. 121–134. DOI 10.23986/afsci.5654.
  • SELYANINOV G.T. 1930. K metodike sel’skokhozyaystvennoy klimatografii. V: Trudy po sel’skokhozyaystvennoy meteorologii [Methods of agricultural climatology. In: Agricultural meteorology]. Vyp. 22 p. 45–89.
  • ŚWITONIAK M., KABAŁA C., PODLASIŃSKI M., SMRECZAK B. 2019. Proposal of the correlation between cartographic units on the agricultural soil map and types and subtypes of Polish Soil Classification. Soil Science Annual. Vol. 70(2) p. 98–114.
  • TRUBA M., SOSNOWSKI J. 2022. The effect of Tytanit on fibre fraction content in Medicago x varia T. Martyn and Trifolium pratense L. cell walls. Agriculture. Vol. 12(2), 191. DOI 10.3390/agricul-ture12020191.
  • VASILJEVIĆ S., ĆUPINA B., KRSTIC D., PATAKI I., KATANSKI S., MILOŠEVIĆ B. 2011. Seasonal changes of proteins, structural carbohydrates, fats and minerals in herbage dry matter of red clover (Trifolium pratense L.). Biotechnology in Animal Husbandry. Vol. 27(4) p. 1543–1550. DOI 10.2298/BAH1104543V.
  • WARAMIT N., MOORE K.J., FALES S.L. 2012. Forage quality of native warm-season grasses in response to nitrogen fertilization and harvest date. Animal Feed Science and Technology. Vol. 174 (1–2) p. 46–59. DOI 10.1016/j.anifeedsci.
  • XU Z.Z., ZHOU G.S. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta. Vol. 224(5) p. 1080–1090.
  • ZIELEWICZ W., SWĘDRZYŃSKI A., DOBRZYŃSKI J., SWĘDRZYŃSKA D., KULKOVA I., WIERZCHOWSKI P., WRÓBEL B. 2021. Effect of forage plant mixture and biostimulants application on the yield, changes of botanical composition, and microbiological soil activity. Agronomy. Vol. 11, 1786. DOI 10.3390/agronomy11091786.
  • ZIERNICKA-WOJTASZEK A. 2020. Pluviothermal regionalization of Poland in light of present-day climate change. Polish Journal of Environmental Studies. Vol. 29 (1) p. 989–996. DOI 10.15244/pjoes/99976.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ed8d064-e31c-4ca4-b5d5-4b14a2a6a4af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.