PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of eddy dissipation concept and finite-rate/eddy dissipation models in case of coal gasification in a two-stage entrained flow gasifier and their relation to the experimental results

Identyfikatory
Warianty tytułu
PL
Porównanie modelu eddy dissipation concept z modelem finite-rate/eddy dissipation model pod kątem procesu zgazowania w dwustopniowym reaktorze strumieniowym oraz zestawienie uzyskanych wyników z wynikami eksperymentalnymi
Języki publikacji
EN
Abstrakty
EN
In this paper, a CFD tool – Ansys Fluent 17.2 was applied to obtain a 3-D operational model of a 200 td-1 pilot-scale gasifier that was tested in Japan. The gasifier is an up-flow co-current reactor comprising combustor and reductor separated by a throat. For the modelling procedure, the Eulerian-Lagrangian method has been used. Euler approach describes the gas phase processes, whereas Lagrange describes the solid phase. The aim of this paper is at first to compare simulation results of two turbulence-chemistry interaction procedures available in Ansys Fluent and their impact on coal gasification and secondly to compare obtained results with the experiment.
PL
W tej pracy zastosowano program CFD – Ansys Fluent 17.2, aby otrzymać model 3D pilotażowej zgazowarki MHI 200 t/d, która była testowana w Japonii. Jest to reaktor współprądowy typu up-flow zawierający komorę spalania oraz reduktor oddzielone od siebie przez gardziel. Do otrzymania modelu zastosowano podejście Lagrange’a-Eulera. Faza dyspersyjna opisywana jest metodą Lagrange’a, natomiast faza ciągła – gazowa metodą Eulera. Celem tego badania było porównanie dwóch modeli opisujących wzajemne interakcje między kinetyką reakcji a turbulencją pod kątem całego procesu zgazowania oraz zestawienie uzyskanych wyników z wynikami eksperymentalnymi.
Wydawca
Czasopismo
Rocznik
Tom
Strony
97--106
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
  • doktorant Politechnika Wrocławska
  • Politechnika Wrocławska
  • Politechnika Wrocławska
Bibliografia
  • [1] ANSYS FLUENT 12.0 Theory Guide - Contents n.d. http://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node1.htm (accessed May 12, 2018).
  • [2] Bakker A. Lecture 13 - Heat Transfer(Applied Computational Fluid Dynamics). Presentation 2006:1–41. doi:10.1016/j.combustflame.2005.06.005.
  • [3] Chen C, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier. Fuel 2000;80.
  • [4] Chen C, Horio M, Kojima T. Use of numerical modeling in the design and scale-up of entrained flow coal
  • [5] Fletcher DF, Haynes BS, Christo FC, Joseph SD. A CFD based combustion model of an entrained flow biomass gasifier. Appl Math Model 2000;24:165–82. doi:10.1016/S0307-904X(99)00025-6.
  • [6] Ghasemi E, Soleimani S, Lin CX. RANS simulation of methane-air burner using local extinction approach within eddy dissipation concept by OpenFOAM. Int Commun Heat Mass Transf 2014;54:96–102. doi:10.1016/j.icheatmasstransfer.2014.03.006.
  • [7] GRAN IR, MAGNUSSEN BF. A Numerical Study of a Bluff-body Stabilized Diffusion Flame. Part 1. Influence of Turbulence Modeling and Boundary Conditions. Combust Sci Technol 1996;119:171–90. doi:10.1080/00102209608951998.
  • [8] Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Chemical Model of Coal Devolatilization Using Percolation Lattice Statistics. Energy and Fuels 1989;3:175–86. doi:10.1021/ef00014a011.
  • [9] Goshayeshi B, Sutherland JC. A comparison of various models in predicting ignition delay in single-particle coal combustion. Combust Flame 2014;161:1900–10. doi:10.1016/j.combustflame.2014.01.010.
  • [10] Khan J, Wang T. Implementation of a Demoisturization and Devolatilization Model in Multi-Phase Simulation of a Hybrid Entrained-Flow and Fluidized Bed Mild Gasifier. Int J Clean Coal Energy 2013;02:35–53. doi:10.4236/ijcce.2013.23005.
  • [11] Kobayashi H, Howard JB, Sarofim AF. Coal devolatilization at high temperatures. Symp Combust 1977;16:411–25. doi:10.1016/S0082-0784(77)80341-X.
  • [12] Kumar M, Zhang C, Monaghan RFD, Singer SL, Ghoniem AF, Asme. CFD Simulation of Entrained Flow Gasification with Improved Devolatilization and Char Consumption Submodels. Imece2009 Proc Asme Int Mech Eng Congr Expo Vol 3 2010:383–95. doi:10.1115/IMECE2009-12982.
  • [13] Kumar M, Ghoniem AF. Multiphysics Simulations of Entrained Flow Gasification . Part II : Constructing and Validating the Overall Model 2012. doi:10.1021/ef2008858.
  • [14] Magnussen BF, Hjertager BH. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp Combust 1977;16:719–29. doi:10.1016/S0082-0784(77)80366-4.
  • [15] Ma J, Zitney SE. Computational fluid dynamic modeling of entrained-flow gasifiers with improved physical and chemical submodels. Energy and Fuels 2012;26:7195–219. doi:10.1021/ef301346z.
  • [16] Mardani A. Optimization of the Eddy Dissipation Concept (EDC) model for turbulence-chemistry interactions under hot diluted combustion of CH4/H2. Fuel 2017;191:114–29. doi:10.1016/j.fuel.2016.11.056.
  • [17] Parente A, Malik MR, Contino F, Cuoci A, Dally BB. Extension of the Eddy Dissipation Concept for turbulence/chemistry interactions to MILD combustion. Fuel 2016;163:98–111. doi:10.1016/j.fuel.2015.09.020.
  • [18] Rehm M, Seifert P, Meyer B. Theoretical and numerical investigation on the EDC-model for turbulence-chemistry interaction at gasification conditions. Comput Chem Eng 2009;33:402–7. doi:10.1016/j.compchemeng.2008.11.006.
  • [19] Shi S-P, Zitney SE, Shahnam M, Syamlal M, Rogers WA. Modelling coal gasification with CFD and discrete phase method. J Energy Inst 2006;79:217–21. doi:10.1179/174602206X148865.
  • [20] Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new kt eddy viscosity model for high :reynolds number turbulent flows. Compurers Fluids 1995;24:227–38. doi:10.1016/0045-7930(94)00032-T.
  • [21] Silaen A, Wang T. Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier. Int J Heat Mass Transf 2010;53:2074–91. doi:10.1016/j.ijheatmasstransfer.2009.12.047.
  • [22] Slezak A, Kuhlman JM, Shadle LJ, Spenik J, Shi S. CFD simulation of entrained-flow coal gasification: Coal particle density/sizefraction effects. Powder Technol 2010;203:98–108. doi:10.1016/j.powtec.2010.03.029.
  • [23] Spalding DB. Development of the eddy-break-up model of turbulent combustion. Symp Combust 1977;16:1657–63. doi:10.1016/S0082-0784(77)80444-X.
  • [24] Vicente W, Ochoa S, Aguillón J, Barrios E. An Eulerian model for the simulation of an entrained flow coal gasifier. Appl Therm Eng 2003;23:1993–2008. doi:10.1016/S1359-4311(03)00149-2.
  • [25] Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier. Fuel 2006;85:1935–43. doi:10.1016/j.fuel.2006.02.002.
  • [26] U.S Department of energy - Entrained flow gasifiers. entrainedflow | netl.doe.gov n.d. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/entrainedflow (accessed May 4, 2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1d9e1bbd-8761-4b0f-b5dc-14db5e505ca8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.