PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of the violence intensity parameters of the explosion of micron-sized zinc powder

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The focus of this study was the explosion hazard of micron-sized zinc powder in a small space and low energy environment in the actual using of ventilation pipes of zinc powder processing plants. In the experimental study, the dust explosion parameters in the device (20 L sphere) under special conditions was used, and zinc powder with a median diameter of 3.80 μm was the research material. The experimental conditions were at a temperature 296.15~299.15 K, and a humidity 45~55%. The dust explosion violence parameter of the micron-sized zinc powder was measured. The experimental results showed that when the energy of the igniter was 10 J and the explosion violence parameters of micron-sized zinc powder dust were largest, the ignition delay time was 162~165 ms, the pressure for powder injection was 1.19~1.21 MPa, and the dust concentration was 1750~1820 g/m3. The experimental data were processed by the fitting method, and the degree of influence of three factors on the explosion intensity parameter of micron-sized zinc powder was as follows: dust concentration, ignition delay time, pressure for powder injection. These results are valuable in the design of explosion hazard assessment and anti-explosion measures in zinc powder production.
Rocznik
Strony
607--629
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, No. 932 South Lushan Road, Changsha Hunan 410083, P.R. China
autor
  • School of Resources and Safety Engineering, Central South University, No. 932 South Lushan Road, Changsha Hunan 410083, P.R. China
Bibliografia
  • [1] Song, Y.; Nassim, B.; Zhang, Q. Explosion Energy of Methane/Deposited Coal Dust and Inert Effects of Rock Dust. Fuel 2018, 228: 112-122.
  • [2] Fu, B.; Liu, G.; Sun, M.; Hower, J.C.; Hu, G.; Wu, D. A Comparative Study on the Mineralogy, Chemical Speciation, and Combustion Behavior of Toxic Elements of Coal Beneficiation Products. Fuel 2018, 228: 297-308.
  • [3] Ni, P.; Bai, L.; Wang, X.; Li, R. Characteristics of Evolution of In-Cylinder Soot Particle Size and Number Density in a Diesel Engine. Fuel 2018, 228: 215-225.
  • [4] Lanzerstorfer, C. Fly Ash From Coal Combustion: Dependence of the Concentration of Various Elements on the Particle Size. Fuel 2018, 228: 263-271.
  • [5] Fedorov, A.V.; Shulgin, A.V. About Stability of the Ignition Process of Small Solid Particle. J. Loss Prev. Process Ind. 2007, 20(4-6): 317-321.
  • [6] Xiao, H.; Sun, J.; He, X. A Study on the Dynamic Behavior of Premixed Propane-Air Flames Propagating in a Curved Combustion Chamber. Fuel 2018, 228: 342-348.
  • [7] Klinzing, G.E.; Basha, O.M. A Correlation for Particle Velocities in Pneumatic Conveying. Powder Technol. 2017, 310: 201-204.
  • [8] Cashdollar, K.L. Coal Dust Explosibility. J. Loss Prev. Process Ind. 1996, 9(1): 65-76.
  • [9] Cao, W.; Gao, W.; Peng, Y.; Liang, J.; Pan, F.; Xu, S. Experimental and Numerical Study on Flame Propagation Behaviors in Coal Dust Explosions. Powder Technol. 2014, 266: 456-462.
  • [10] Cashdollar, K.L. Overview of Dust Explosibility Characteristics. J. Loss Prev. Process Ind. 2000, 13: 183-199.
  • [11] Joseph, G.; Team, C.S.B.H.I. Combustible Dusts: a Serious Industrial Hazard. J. Hazard. Mater. 2007, 142(3): 589-91.
  • [12] Cao, W.; Gao, W.; Liang, J.; Xu, S.; Pan, F. Flame-Propagation Behavior and a Dynamic Model for the Thermal-radiation Effects in Coal-Dust Explosions. J. Loss Prev. Process Ind. 2014, 29: 65-71.
  • [13] Di Sarli, V.; Russo, P.; Sanchirico, R.; Di Benedetto, A. CFD Simulations of Dust Dispersion in the 20 L Vessel: Effect of Nominal Dust Concentration. J. Loss Prev. Process Ind. 2014, 27: 8-12.
  • [14] Mishra, K.B.; Wehrstedt, K.-D. Spill-Over Characteristics of Peroxy-Fuels: Two-Phase CFD Investigations. J. Loss Prev. Process Ind. 2014, 29: 186-197.
  • [15] Shen, Y.S.; Yu, A.B.; Austin, P.R.; Zulli, P. CFD Study of In-Furnace Phenomena of Pulverised Coal Injection in Blast Furnace: Effects of Operating Conditions. Powder Technol. 2012, 223: 27-38.
  • [16] Yan, X.; Yu, J. Dust Explosion Venting of Small Vessels at the Elevated Static Activation Overpressure. Powder Technol. 2014, 261: 250-256.
  • [17] Xiao, H.; Sun, J.; Chen, P. Experimental and Numerical Study of Premixed Hydrogen/Air Flame Propagating in a Combustion Chamber. J. Hazard. Mater. 2014, 268: 132-9.
  • [18] Xin, H.-h.; Wang, D.-m.; Qi, X.-y.; Qi, G.-s.; Dou, G.-l. Structural Characteristics of Coal Functional Groups Using Quantum Chemistry for Quantification of Infrared Spectra. Fuel Process Technol. 2014, 118: 287-295.
  • [19] Li, Q.; Wang, K.; Zheng, Y.; Mei, X.; Lin, B. Explosion Severity of Micro-Sized Aluminum Dust and Its Flame Propagation Properties in 20 L Spherical Vessel. Powder Technol. 2016, 301: 1299-1308.
  • [20] Zhang, Q.; Liu, L.; Shen, S. Effect of Turbulence on Explosion of Aluminum Dust at Various Concentrations in Air. Powder Technol. 2018, 325: 467-475.
  • [21] Choi, K.; Sakasai, H.; Nishimura, K. Minimum Ignition Energies of Pure Magnesium Powders Due to Electrostatic Discharges and Nitrogen’s Effect. J. Loss Prev. Process Ind. 2016, 41: 144-146.
  • [22] Marmo, L.; Piccinini, N.; Danzi, E. Small Magnitude Explosion of Aluminium Powder in an Abatement Plant: A Telling Case. Process Saf. Environ. Prot. 2015, 98: 221-230.
  • [23] Li, Q.; Lin, B.; Dai, H.; Zhao, S. Explosion Characteristics of H2/CH4/Air and CH4/Coal Dust/Air Mixtures. Powder Technol. 2012, 229: 222-228.
  • [24] Cao, W.; Cao, W.; Peng, Y.; Qiu, S.; Miao, N.; Pan, F. Experimental Study on the Combustion Sensitivity Parameters and Pre-combusted Changes in Functional Groups of Lignite Coal Dust. Powder Technol. 2015, 283: 512-518.
  • [25] GB/T 16426-1996 Determination for Maximum Explosion Pressure and Maximum Rate of Pressure Rise of Dust Cloud. (in Chinese).
  • [26] Proust, C.; Accorsi, A.; Dupont, L. Measuring the Violence of Dust Explosions with the “20l Sphere” and with the Standard “ISO 1 m3 Vessel”. J. Loss Prev. Process Ind. 2007, 20(4-6): 599-606.
  • [27] Dahoe, A.E.; Cant, R.S.; Pegg, M.J.; Scarlett, B. On the Transient Flow in the 20-Liter Explosion Sphere. J. Loss Prev. Process Ind. 2001, 14: 475-487.
  • [28] Cao, W.; Qin, Q.; Cao, W.; Lan, Y.; Chen, T.; Xu, S.; Cao, X. Experimental and Numerical Studies on the Explosion Severities of Coal Dust/Air Mixtures in a 20-L Spherical Vessel. Powder Technol. 2017, 310: 17-23.
  • [29] Mnif, R.; Ben Jemaa, M.C.; Kacem, N.H.; Elleuch, R. Impact of Viscoelasticity on the Tribological Behavior of PTFE Composites for Valve Seals Application. Tribology Trans. 2013, 56(5): 879-886.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c697d97-c7fe-4b04-888b-eca672e6c465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.