Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biogenic synthesis of iron and zinc nanoparticles from carob seed extract (Ceratonia siliqua L.) and their antibacterial activity were studied. The characteristics of the prepared nanoparticles were evaluated shapes and sizes by field emission scanning electron microscopy (FESEM) analysis with mapping technique and energy dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FTIR) confirmed the functional group that contributes to the biogenic and antibacterial activity. The appearance of metal-oxygen bonds for both ZnO NPs and Fe2 O3 NPs in spectra and the presence of zinc, iron, and oxygen in varying proportions confirm the success of the biosynthesis of the nanoparticles. Ceratonia siliqua L. extract, iron, and zinc showed high effectiveness in removing bacteria from polluted water.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
17--30
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Environmental Pollution Department, College of Environmental Sciences, Al-Qasim Green University, Babylon 51013, Iraq
- Environmental Pollution Department, College of Environmental Sciences, Al-Qasim Green University, Babylon 51013, Iraq
Bibliografia
- 1. Aisida S.O., Madubuonu N., Alnasir M.H., Ahmad I., Botha S., Ezema F.I. 2020. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci., 10, 305−315. https://doi.org/10.1007/s13204-019-01099-x
- 2. Aisida S.O., Ugwu K., Akpa P.A., Nwanya A.C., Ejikeme P.M., Botha S., Ahmad I., Maaza M., Ezema F.I. 2019. Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. Mater. Chem. Phys., 237, 121859. https://doi.org/10.1016/j.matchemphys2019.121859
- 3. Aisida S.O., Ugwu K., Akpa P.A., Nwanya A.C., Nwankwoa U., Botha S.S., Ejikeme P.M., Ahmad I., Maaza M., Ezema F. 2019 Biogenic synthesis and antibacterial activity of controlled silver nanoparticles using an extract of Gongronema Latifolium. I. Surface. Interfac., 17, 100359. https://doi.org/10.1016/jsurfin.2019.100359
- 4. Ajinkya N., Yu X., Kaithal P., Luo H., Somani P., Ramakrishna S. 2020. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials, 4644, 13. https://doi.org/10.3390/ma13204644
- 5. Demirezen D. A., Yılmaz D.D. 2021. Real-time colorimetric detection of dissolved carbon dioxide using pH-sensitive indicator based on anthocyanin and PVA coated green iron oxide nanoparticles at room temperature. Inorg. Nano-Met. Chem. 52, 761−771. https://doi.org/10.1080/24701556.2021.1980032
- 6. Ali-Shtayeh M.S., Jamous R.M., Al-Shafie’ J.H., Elgharabah W.A., Kherfan F.A., Qarariah K.H., Khdair I.S., Soos I.M., Musleh A.A., Isa B.A. 2008. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): A comparative study. Journal of Ethnobiology and Ethnomedicine 4, 1–13.
- 7. Anbuvannan M., Ramesh M., Viruthagiri G., Shanmugam N., Kannadasan N. 2015. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method, Spectrochim. Acta A Mol. Biomol. Spectrosc., 143, 304–308.
- 8. Arasu M.V., Arokiyaraj S., Viayaraghavan P., Kumar T.S.J., Duraipandiyan V., Al-Dhabi N.A., Kaviyarasu K.J. 2019. One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. Photochem. Photobiol. B Biol., 190, 154−162. https://doi.org/10.1016/j.jphotobiol.2018.11.020
- 9. Balogun S., Ayangbenro A., Ogunsanya G., Azeez A., Muonaka C., Ihongbe M. 2016. Bacteriological pollution indicators in Ogun River flowing through Abeokuta metropolis. Journal of Science and Technology (Ghana), 36, 54–63.
- 10. Baumel A., Mirleau P., Viruel J., Kharrat M.B.D., La Malfa S., Ouahman L., Diadema K., Moakhar M., Sanguin H., Médail F. 2018. Assessment of plant species diversity associated with the carob tree (Ceratonia siliqua, Fabaceae) at the Mediterranean scale. Plant Ecol. Evol., 151, 185–193.
- 11. Dahmani W., Elaouni N., Abousalim A., Akissi Z.L.E, Legssyer A, Ziyyat A, Sahpaz S. 2023. Exploring carob (Ceratonia siliqua L.): A comprehensive assessment of its characteristics, ethnomedicinal uses, phytochemical aspects, and pharmacological activities. Plants 12, 3303.
- 12. Dakia P.A., Wathelet B., Paquot M. 2007. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem., 102, 1368–1374.
- 13. Davies J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science, 264(80), 5157, 375–382.
- 14. Demirezen D.A., Yılmaz Ş., Yılmaz D.D., Yıldız Y.Ş. 2022. Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: Improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. Int. J. Mater. Res 113, 849–861.
- 15. Elumalai K., Velmurugan S. 2015. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica. Appl. Surf. Sci., 345, 329–336.
- 16. Fabricant D.S. and Farnsworth N.R. 2001. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 109(1), 69–75.
- 17. Farahmandjou M., Soflaee F. 2015. Synthesis and characterization of α-Fe2 O3 nanoparticles by simple co-precipitation method. Physical Chemistry Research, 3, 191–196.
- 18. Feng Q., Liu Y., Huang J., Chen K., Huang J., Xiao K. 2018. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Sci. Rep., 2082, 1−13. https://doi.org/10.1038/s41598-018-19628-z
- 19. Gupta M., Tomar R.S., Kaushik S., Mishra R.K., Sharma D. 2018. Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front. Microbiol., 9, 2030.
- 20. Hameed A.S., Karthikeyan C., Ahamed A.P., Thajuddin N., Alharbi N.S., Alharbi S.A., Ravi G. 2016. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep., 6, 24312.
- 21. Ifeanyichukwu U.L., Omolola E.F., Collins N.A. 2020. Green synthesis of zinc oxide nanoparticles from Pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules, 25, 4521.
- 22. Karababa E., Coşkuner Y. 2013. Physical properties of carob bean (Ceratonia siliqua L.): An industrial gum yielding crop. Ind. Crops Prod., 42, 440–446.
- 23. Karaboze I., Ucar F., Eltem R., Ozdmir G., and Ate M.S., 2003. Determination of existence and count of pathogenic microorganisms in Izmir Bay, JES, 26, 1–18.
- 24. Karmous I., Taheur F.B., Zuverza-Mena N., Jebahi S., Vaidya S., Tlahig S., Mhadhbi M., Gorai M., Raouafi A., Debara M. 2022. Phytosynthesis of zinc oxide nanoparticles using Ceratonia siliqua L. and evidence of antimicrobial activity. Plants, 11, 3079.
- 25. Khan M., Khan A.U., Bogdanchikova N., Garibo D. 2021. Antibacterial and antifungal studies of biosynthesized silver nanoparticles against plant parasitic nematode Meloidogyne Incognita, plant pathogens Ralstonia Solanacearum and Fusarium Oxysporum. Molecules, 26, 2462.
- 26. Koivunen J., Siitonen A., Heinonen-Tanski H. 2003. Elimination of enteric bacteria in biological–chemical wastewater treatment and tertiary filtration units. Water Research, 37, 690–698.
- 27. Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O. 2017. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials, 7(9), 243. https://doi.org/10.3390/nano7090243
- 28. Li W., Liu D., Wu J., Kim C., Fortner J.D. 2014. Aqueous Aggregation and surface deposition processes of engineered superparamagnetic iron oxide nanoparticles for environmental applications environ. Sci. Technol., 48, 11892−11900. https://doi.org/10.1021/es502174p
- 29. Li Y., Yang D., Wang S., Li C., Xue B., Yang L., Shen Z., Jin M., Wang J., Qiu Z. 2018 Ultrathin polyamide nanofiltration membranes with tunable chargeability for multivalent cation removal. Molecules, 23, 602. https://doi.org/10.3390/molecules23030606
- 30. Mohamed Y.M., Azzam A.M., Amin B.H., Safwat N.A. 2015. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr. J. Biotechnol., 14, 1234−1241. https://doi.org/10.5897/AJB2014.14286
- 31. Zehab M.M.P., Shariati-Sharifi F., Jamshidian A., Hajinezhad M.R. 2018. The effect of Syrian mesquite (Prosopis farcta) seed extract on thioacetamide-induced oxidative stress in rats. Feyz Medical Sciences Journal, 22, 25–30.
- 32. Mude N., Ingle A., Gade A., and Rai M. 2009. Synthesis of silver nanoparticles using callus extract of Carica papaya-a first report. J. Plant Biochem. Biotechnol., 18(1), 83–86.
- 33. Nagajyothi P.C., Sreekanth T.V.M., Tettey C.O., Jun Y.I., Mook S.H. 2014. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg. Med. Chem. Lett., 24, 4298–4303.
- 34. Nwanya A.C., Razanamahandry L.C., Bashir A., Ikpo C.O., Nwanya S.C., Botha S., Ntwampe S.K.O., Ezema F.I., Iwuoha E.I., Maaza M.J. 2019. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles.. Hazard Mater., 375, 281−289. https://doi.org/10.1016/j.jhazmat.2019.05.004
- 35. Obeidat M., Shatnawi M., Al-mazra’awi M.S., Al-Zu’bi, Al dmoor H, Al-Qudah, Qudah J., Otri I. 2012. Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol., 7(1), 59–67.
- 36. Pasiecznik N., Harris P.J., Smith S.J. 2004. Identifying tropical Prosopis species: a field guide. Hdra Publishing Coventry, UK.
- 37. Pillai A.M., Sivasankarapillai V.S., Rahdar A., Joseph J., Sadeghfar F.R., Anuf A., Kyzas K.R.G.Z. 2020. Green synthesis and characterization of zinc oxide nanoparticles ith antibacterial and antifungal activity. J. Mol. Struct., 1211, 128107.
- 38. Pradeep M., Kruszka D., Kachlicki P., Mondal D., Franklin G. 2022. Uncovering the phytochemical basis and the mechanism of plant extract-mediated eco-friendly synthesis of silver nanoparticles using ultra-performance liquid chromatography coupled with a photodiode array and high-resolution mass spectrometry. ACS Sustain. Chem. Eng., 10, 562–571.
- 39. Raheem H.Q., Al-Thahab A., and Abd F.G. 2018. Antibacterial activity of silver nanoparticles extracted from Proteus mirabilis and healing the wound in rabbit. Biochem. Cell. Arch, 18(1), 97–104.
- 40. Rana S., Bajaj A., Mout R., Rotello V.M. 2012. Monolayer coated gold nanoparticles for delivery applications. Advanced drug delivery reviews 64, 200–216.
- 41. Rompre A., Servais P., Baudart J., De-Roubin M.- R., Laurent P. 2002. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of microbiological methods 49, 31–54.
- 42. Sangani M.H., Moghaddam M.N., Mahdi M. 2015. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed J., 2, 121–128.
- 43. Some S., Mondal R., Mitra D., Jain D., Verma D., Das S. 2021. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus 1: 100008.
- 44. Sundrarajan M., Ambika S., Bharathi K. 2015. Plant-extract mediated synthesis of ZnO nanoparticlesusing Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol., 26, 1294–1299.
- 45. Thukkaram M., Sitaram S., Kannaiyan S.K. 2014. Antibacterial Efficacy of Iron-Oxide Nanoparticles against Biofilms on Different Biomaterial Surfaces. Int J Biomater, 716080. https://doi.org/10.1155/2014/716080
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1c609606-24ec-49ba-a007-7b534c9fc09f