PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of mineral product price based on mean reversion model

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prognozowanie ceny produktu mineralnego w oparciu o model średniej rewersji
Języki publikacji
EN
Abstrakty
EN
The mean-reversion model is introduced into the study of mineral product price prediction. The gold price data from January 2018 to December 2021 are selected, and a mean-reverting stochastic process simulation of the gold price was carried out using Monte Carlo simulation (MCS) method. By comparing the statistical results and trend curves of the mean-reversion (MR) model, geometric Brownian motion (GBM) model, time series model and actual price, it is proved that the mean-reversion process is valid in describing the price fluctuation of mineral product. At the same time, by comparing with the traditional prediction methods, the mean-reversion model can quantitatively assess the uncertainty of the predicted price through a set of equal probability stochastic simulation results, so as to provide data support and decision-making basis for the risk analysis of future economy.
PL
W badaniach predykcji cen produktów mineralnych wprowadzono model średniej rewersji. Wybrano dane dotyczące cen złota od stycznia 2018 do grudnia 2021 r., a symulację ceny złota w procesie odwracania średniej przeprowadzono metodą symulacji Monte Carlo (MCS). Porównując wyniki statystyczne i krzywe trendu modelu średniej rewersji (MR), modelu geometrycznego ruchu Browna (GBM), modelu szeregów czasowych i rzeczywistej ceny, udowodniono, że proces średniej rewersji jest prawidłowy w opisie fluktuacji cen na produkt mineralny. Jednocześnie, porównując z tradycyjnymi metodami predykcji, model średniej rewersji może ilościowo oszacować niepewność przewidywanej ceny za pomocą zestawu wyników symulacji stochastycznej równego prawdopodobieństwa, w celu zapewnienia wsparcia danych i podstawy decyzyjnej do analizy ryzyka przyszłej gospodarki.
Twórcy
autor
  • BGRIMM Technology Group; Beijing Key Laboratory of Nonferrous Intelligent Mining Technology
  • BGRIMM Intelligent Technology Co. Ltd, China
autor
  • BGRIMM Technology Group, China
autor
  • BGRIMM Intelligent Technology Co. Ltd, China
  • BGRIMM Technology Group, China
Bibliografia
  • [1] Chen et al. 2019 – Chen, J., Zhu, X. and Zhong, M. 2019. Nonlinear effects of financial factors on fluctuations in non-ferrous metals prices: A Markov-switching VAR analysis. Resources Policy 61, pp. 489–500, DOI: 10.1016/j.resourpol.2018.04.015.
  • [2] Dynkin, E.B. 2012. Theory of Markov processes. Courier Corporation.
  • [3] Fama, E.F. and French, K.R. 1988. Permanent and temporary components of stock prices. Journal of Political Economy 96, pp. 246–273, DOI: 10.1086/261535.
  • [4] Garcia et al. 2018 – Garcia, F., Guijarro, F., Oliver, J. and Tamošiūnienė, R. 2018. Hybrid fuzzy neural network to predict price direction in the German DAX-30 index. Technological and Economic Development of Economy 24(6), pp. 2161–2178, DOI: 10.3846/tede.2018.6394.
  • [5] Gleich et al. 2013 – Gleich, B., Achzet, B., Mayer, H. and Rathgeber, A. 2013. An empirical approach to determine specific weights of driving factors for the price of commodities – A contribution to the measurement of the economic scarcity of minerals and metals. Resources Policy 38(3), pp. 350–362, DOI: 10.1016/j.resourpol.2013.03.011.
  • [6] Labys et al. 1999 – Labys, W.C., Achouch, A. and Terraza, M. 1999. Metal prices and the business cycle. Resources Policy 25(4), pp. 229–238, DOI: 10.1016/S0301-4207(99)00030-6.
  • [7] Liu, H. and Long, Z. 2020. An improved deep learning model for predicting stock market price time series. Digital Signal Processing 102, DOI: 10.1016/j.dsp.2020.102741.
  • [8] Liu et al. 2022 – Liu, K., Cheng, J. and Yi, J. 2022. Copper price forecasted by hybrid neural network with Bayesian Optimization and wavelet transform. Resources Policy 75, DOI: 10.1016/j.resourpol.2021.102520.
  • [9] Livieris et al. 2020 – Livieris, I.E., Pintelas, E. and Pintelas, P. 2020. A CNN-LSTM model for gold price time-series forecasting. Neural computing and applications 32, pp. 17351–17360, DOI: 10.1007/s00521-020-04867-x.
  • [10] MATLAB 2016. The MathWorks, Inc. United States Natick, Massachusetts.
  • [11] Mohamed, J. 2020. Time series modeling and forecasting of Somaliland consumer price index: a comparison of ARIMA and regression with ARIMA errors. American Journal of Theoretical and Applied Statistics 9(4), pp. 143–53, DOI: 10.11648/j.ajtas.20200904.18.
  • [12] Obthong et al. 2020 – Obthong, M., Tantisantiwong, N., Jeamwatthanachai, W. and Wills, G.B. 2020. A Survey on Machine Learning for Stock Price Prediction: Algorithms and Techniques. FEMIB 2020, pp. 63–71, DOI: 10.5220/0009340700630071.
  • [13] Postali, F. and Picchetti, P. 2006. Geometric Brownian Motion and structural breaks in oil prices: A quantitative analysis. Energy Economics 28(4), pp. 506–522, DOI: 10.1016/j.eneco.2006.02.011.
  • [14] Poterba, J.M. and Summers, L.H. 1987. Mean Reversion in Stock Prices: Evidence and Implications. Journal of Financial Economics 22(1), pp. 27–59.
  • [15] Ramos et al. 2019 – Ramos, A.L., Mazzinghy, D.B., Barbosa, V.D.S.B., Oliveira, M.M. and Silva, G.R.D. 2019. Evaluation of an iron ore price forecast using a geometric Brownian motion model. REM-International Engineering Journal, 72, pp. 9–15, DOI: 10.1590/0370-44672018720140.
  • [16] Rathnayaka, R. and Seneviratna, D. 2019. Taylor series approximation and unbiased GM(1,1) based hybrid statistical approach for forecasting daily gold price demands. Grey systems: theory and application 9, pp. 5–18, DOI: 10.1108/GS-08-2018-0032.
  • [17] Rubaszek et al. 2020 – Rubaszek, M., Karolak, Z. and Kwas, M. 2020. Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective. Resources Policy 65, DOI: 10.1016/j.resourpol.2019.101538.
  • [18] Savolainen et al. 2022 – Savolainen, J., Rakhsha, R. and Durham, R. 2022. Simulation-based decision-making system for optimal mine production plan selection. Mineral Economics, pp. 1–15, DOI: 10.1007/s13563-021-00297-w.
  • [19] Schwartz, E.S. 1997. The stochastic behavior of commodity prices: Implications for valuation and hedging. The Journal of finance 52, pp. 923–973, DOI: 10.1111/j.1540-6261.1997.tb02721.x.
  • [20] Shrestha, M.B. and Bhatta, G.R. 2018. Selecting appropriate methodological framework for time series data analysis. Journal of Finance and Data Science 4(2), pp. 71–89, DOI: 10.1016/j.jfds.2017.11.001.
  • [21] Wadi et al. 2018 – Wadi, S., Almasarweh, M., Alsaraireh, A.A. and Aqaba, J. 2018. Predicting closed price time series data using ARIMA Model. Modern Applied Science 12(11), pp. 181–185, DOI: 10.5539/mas.v12n11p181.
  • [22] Yao, T. and Wang, Z. 2021. Crude oil price prediction based on LSTM network and GM (1,1) model. Grey Systems: Theory and Application 11, pp. 80–94, DOI: 10.1108/gs-03-2020-0031.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1b34e638-313a-47d8-8ce2-b2891ab269db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.